Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 22(7): e3002637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018342

RESUMO

A new study characterizes and improves a novel small Cas12a variant before adapting it for in vivo genome editing by delivery via adeno-associated virus (AAV) vectors, showcasing the potential of small CRISPR systems and their compatibility with viral vectors.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Vetores Genéticos , Edição de Genes/métodos , Dependovirus/genética , Sistemas CRISPR-Cas/genética , Vetores Genéticos/genética , Animais , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo
2.
Nat Methods ; 15(11): 924-927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377362

RESUMO

Anti-CRISPR proteins are powerful tools for CRISPR-Cas9 regulation; the ability to precisely modulate their activity could facilitate spatiotemporally confined genome perturbations and uncover fundamental aspects of CRISPR biology. We engineered optogenetic anti-CRISPR variants comprising hybrids of AcrIIA4, a potent Streptococcus pyogenes Cas9 inhibitor, and the LOV2 photosensor from Avena sativa. Coexpression of these proteins with CRISPR-Cas9 effectors enabled light-mediated genome and epigenome editing, and revealed rapid Cas9 genome targeting in human cells.


Assuntos
Técnicas Biossensoriais , Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Edição de Genes , Optogenética , Fototropinas/química , Engenharia de Proteínas , Epigenômica , Genoma , Células HEK293 , Humanos , Luz , Streptococcus pyogenes/enzimologia
3.
J Vis Exp ; (188)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342179

RESUMO

Gene delivery vectors derived from Adeno-associated virus (AAV) are one of the most promising tools for the treatment of genetic diseases, evidenced by encouraging clinical data and the approval of several AAV gene therapies. Two major reasons for the success of AAV vectors are (i) the prior isolation of various naturally occurring viral serotypes with distinct properties, and (ii) the subsequent establishment of powerful technologies for their molecular engineering and repurposing in high throughput. Further boosting the potential of these techniques are recently implemented strategies for barcoding selected AAV capsids on the DNA and RNA level, permitting their comprehensive and parallel in vivo stratification in all major organs and cell types in a single animal. Here, we present a basic pipeline encompassing this set of complementary avenues, using AAV peptide display to represent the diverse arsenal of available capsid engineering technologies. Accordingly, we first describe the pivotal steps for the generation of an AAV peptide display library for the in vivo selection of candidates with desired properties, followed by a demonstration of how to barcode the most interesting capsid variants for secondary in vivo screening. Next, we exemplify the methodology for the creation of libraries for next-generation sequencing (NGS), including barcode amplification and adaptor ligation, before concluding with an overview of the most critical steps during NGS data analysis. As the protocols reported here are versatile and adaptable, researchers can easily harness them to enrich the optimal AAV capsid variants in their favorite disease model and for gene therapy applications.


Assuntos
Capsídeo , Dependovirus , Animais , Dependovirus/genética , Dependovirus/metabolismo , Capsídeo/metabolismo , Vetores Genéticos/genética , Proteínas do Capsídeo/genética , Terapia Genética/métodos , Biblioteca de Peptídeos
4.
Methods Mol Biol ; 2173: 137-150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651915

RESUMO

CRISPR labeling is a powerful technique to study the chromatin architecture in live cells. In CRISPR labeling, a catalytically dead CRISPR-Cas9 mutant is employed as programmable DNA-binding domain to recruit fluorescent proteins to selected genomic loci. The fluorescently labeled loci can then be identified as fluorescent spots and tracked over time by microscopy. A limitation of this approach is the lack of temporal control of the labeling process itself: Cas9 binds to the g(uide)RNA-complementary target loci as soon as it is expressed. The decoration of the genome with Cas9 molecules will, however, interfere with gene regulation and-possibly-affect the genome architecture itself. The ability to switch on and off Cas9 DNA binding in CRISPR labeling experiments would thus be important to enable more precise interrogations of the chromatin spatial organization and dynamics and could further be used to study Cas9 DNA binding kinetics directly in living human cells.Here, we describe a detailed protocol for light-inducible CRISPR labeling. Our method employs CASANOVA, an engineered, optogenetic anti-CRISPR protein, which efficiently traps the Streptococcus pyogenes (Spy)Cas9 in the dark, but permits Cas9 DNA targeting upon illumination with blue light. Using telomeres as exemplary target loci, we detail the experimental steps required for inducible CRISPR labeling with CASANOVA. We also provide instructions on how to analyze the resulting microscopy data in a fully automated fashion.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Luz , Telômero/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Humanos , Cinética , Telômero/metabolismo
5.
Viruses ; 12(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784757

RESUMO

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Assuntos
Betacoronavirus/química , Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , RNA Viral/isolamento & purificação , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Humanos , Fenômenos Magnéticos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA