Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell ; 27(12): 3336-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26628744

RESUMO

Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible.


Assuntos
Arabidopsis/enzimologia , Dolicóis/metabolismo , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosilação , Mutação , Oxirredutases/genética , Infertilidade das Plantas
2.
Glycoconj J ; 33(6): 963-973, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27538840

RESUMO

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1-4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are glycosphingolipids with terminal Gal(α1-4)GalNAc sequence, never before described in mammals. Because of the apparent importance of position 211 for enzyme activity, we stably transfected the 2102Ep cells with vectors encoding Gb3/CD77 synthase with glutamine substituted by aspartic acid or asparagine, and evaluated the cells by quantitative flow cytometry, high-performance thin-layer chromatography and real-time PCR. We found that cells transfected with vectors encoding Gb3/CD77 synthase with substitutions p. Q211D or p. Q211N did not express Pk, P1 and NOR antigens, suggesting complete loss of enzymatic activity. Thus, amino acid residue at position 211 of Gb3/CD77 synthase is critical for specificity and activity of the enzyme involved in formation of Pk, P1 and NOR antigens. Altogether, this approach affords a new insight into the mechanism of action of the human Gb3/CD77 synthase.


Assuntos
Galactosiltransferases , Glicoesfingolipídeos/biossíntese , Mutação de Sentido Incorreto , Acetilgalactosamina/genética , Acetilgalactosamina/metabolismo , Substituição de Aminoácidos , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular Tumoral , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicoesfingolipídeos/genética , Humanos , Especificidade por Substrato
3.
J Inherit Metab Dis ; 38(1): 157-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25270028

RESUMO

Congenital disorders of glycosylation (CDG) comprise a group of inborn errors of metabolism with abnormal glycosylation of proteins and lipids. Patients with defective protein N-glycosylation are identified in routine metabolic screening via analysis of serum transferrin glycosylation. Defects in the assembly of the dolichol linked Glc(3)Man(9)GlcNAc(2) glycan and its transfer to proteins lead to the (partial) absence of complete glycans on proteins. These defects are called CDG-I and are located in the endoplasmic reticulum (ER) or cytoplasm. Defects in the subsequent processing of protein bound glycans result in the presence of truncated glycans on proteins. These defects are called CDG-II and the enzymes involved are located mainly in the Golgi apparatus. In recent years, human defects have been identified in dolichol biosynthesis genes within the group of CDG-I patients. This has increased interest in dolichol metabolism, has resulted in specific recognizable clinical symptoms in CDG-I and has offered new mechanistic insights in dolichol biosynthesis. We here review its biosynthetic pathways, the clinical and biochemical phenotypes in dolichol-related CDG defects, up to the formation of dolichyl-P-mannose (Dol-P-Man), and discuss existing evidence of regulatory networks in dolichol metabolism to provide an outlook on therapeutic strategies.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Dolicóis/genética , Dolicóis/metabolismo , Animais , Defeitos Congênitos da Glicosilação/diagnóstico , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Camundongos , Oxirredutases/metabolismo , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
J Incl Phenom Macrocycl Chem ; 83(3-4): 321-334, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26549980

RESUMO

The article presents the synthesis of novel 13- and 16-membered azobenzocrown derivatives with peripheral thiol moieties and preliminary studies assessing their possible application in plasmonic sensors based on gold nanoparticles. The effect of the length of the chain connecting the macrocycle with the thiol group and the effect of the presence of the additional functional compound, i.e. lipoic acid, on the sensor response was analyzed. Colloidal gold nanoparticles modified with a 16-membered crown with a thiol group on oxyethylene (compound 12) or oxybutylene (compound 13) linker was found to have good properties, allowing for detection of potassium ions in aqueous solutions at concentrations 8-20 mM for bifunctionalized nanogold and 4-26 mM for less stable, colloidal gold modified only with thiol derivatives of azobenzocrowns. The response towards potassium cations of bifunctionalized nanogold modified with compound 13 was more stable in time than for the system incorporating compound 12. Compound 13, obtained with the highest yield among all presented thiol derivatives of azobenzocrowns, was selected for further, more detailed, studies.

5.
PLoS One ; 10(2): e0116472, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706384

RESUMO

Duffy Antigen Receptor for Chemokines (DARC) plays multiple roles in human health as a blood group antigen, a receptor for chemokines and the only known receptor for Plasmodium vivax merozoites. It is the target of the murine anti-Fy6 monoclonal antibody 2C3 which binds to the first extracellular domain (ECD1), but exact nature of the recognized epitope was a subject of contradictory reports. Here, using a set of complex experiments which include expression of DARC with amino acid substitutions within the Fy6 epitope in E. coli and K562 cells, ELISA, surface plasmon resonance (SPR) and flow cytometry, we have resolved discrepancies between previously published reports and show that the basic epitope recognized by 2C3 antibody is 22FEDVW26, with 22F and 26W being the most important residues. In addition, we demonstrated that 30Y plays an auxiliary role in binding, particularly when the residue is sulfated. The STD-NMR studies performed using 2C3-derived Fab and synthetic peptide corroborated most of these results, and together with the molecular modelling suggested that 25V is not involved in direct interactions with the antibody, but determines folding of the epitope backbone.


Assuntos
Anticorpos Monoclonais , Sistema do Grupo Sanguíneo Duffy/imunologia , Epitopos/imunologia , Receptores de Superfície Celular/imunologia , Animais , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Escherichia coli/metabolismo , Humanos , Camundongos
6.
Chem Biol ; 22(12): 1643-52, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687144

RESUMO

A unique, unsolved O-mannosyl glycan on α-dystroglycan is essential for its interaction with protein ligands in the extracellular matrix. Defective O-mannosylation leads to a group of muscular dystrophies, called dystroglycanopathies. Mutations in isoprenoid synthase domain containing (ISPD) represent the second most common cause of these disorders, however, its molecular function remains uncharacterized. The human ISPD (hISPD) crystal structure showed a canonical N-terminal cytidyltransferase domain linked to a C-terminal domain that is absent in cytidyltransferase homologs. Functional studies demonstrated cytosolic localization of hISPD, and cytidyltransferase activity toward pentose phosphates, including ribulose 5-phosphate, ribose 5-phosphate, and ribitol 5-phosphate. Identity of the CDP sugars was confirmed by liquid chromatography quadrupole time-of-flight mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. Our combined results indicate that hISPD is a cytidyltransferase, suggesting the presence of a novel human nucleotide sugar essential for functional α-dystroglycan O-mannosylation in muscle and brain. Thereby, ISPD deficiency can be added to the growing list of tertiary dystroglycanopathies.


Assuntos
Distroglicanas/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Células Cultivadas , Colina-Fosfato Citidililtransferase/química , Cristalografia por Raios X , Distroglicanas/química , Fibroblastos , Técnicas de Inativação de Genes , Glicosilação , Humanos , Nucleotidiltransferases/química
7.
Transfus Med Rev ; 28(3): 126-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24895151

RESUMO

Antigens belonging to the P1PK, GLOB, and FORS blood group systems and the GLOB blood group collection represent a closely related set of 13 glycosphingolipids (GSLs). They are synthesized by the coordinated action of glycosyltransferases, encoded by at least 7 different loci. Three of these enzymes show either different activity or a different mRNA expression profile due to genetic polymorphisms, resulting in blood group diversity. In recent years, significant progress has been made in understanding the molecular background and biological functions of these GSLs. Their medical significance is often related to the existence of natural antibodies, as they may cause complications after transfusions and during pregnancies. In addition, GSLs belonging to these blood group systems are receptors for several pathogens. This review summarizes the present knowledge about the complicated network of enzymatic interactions leading to synthesis of these GSLs, as well as their clinical implications.


Assuntos
Antígenos de Grupos Sanguíneos/química , Glicoesfingolipídeos/química , Sistema do Grupo Sanguíneo P/imunologia , Transfusão de Sangue , Feminino , Genótipo , Globosídeos/química , Glicoesfingolipídeos/genética , Humanos , Masculino , Fenótipo , Polimorfismo Genético , Gravidez , Receptores Imunológicos , Receptores Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA