Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Sci Monit ; 29: e941112, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872747

RESUMO

BACKGROUND The regeneration of bone defects is indicated to restore lost tissue mass and functionality. Ostim®, an absorbable nanocrystalline hydroxyapatite (NCHA) paste, is indicated to enhance bone regeneration in bone defects due to trauma or surgery. This retrospective study of 110 patients with long-bone fracture defects presenting at a single trauma center between 2010 and 2012 aimed to compare outcomes with and without the use of Ostim® absorbable nanocrystalline hydroxyapatite paste. MATERIAL AND METHODS The study encompassed fractures in 110 patients - 55 patients received any defect augmentation (ED) and 55 patients were treated with NCHA augmentation. Fractures were located at the distal radius (66.4%, n=73), proximal humerus (5.5%, n=6), and proximal tibia (28.2%, n=31). Evaluating the clinical follow-up, the study encompassed post-surgery complications (eg, non-unions, infection). Bone healing was evaluated by conventional radiographs. RESULTS Postoperative complications occurred in 45.5% of patients regardless of the treatment (P=1.0). The non-union rate in both groups was 5.5% (n=8, P=1.0), and the risk for infection was lower in the NCHA group (3.6%, ED: n=3, NCHA: n=1, p=0.62). Patients suffered open fractures were treated in the NCHA group (100%, n=7, P=0.003). Radiological assessment demonstrated comparable healing of the fracture border, fracture gap, and articular surface (P>0.05). CONCLUSIONS The findings from this retrospective study support previous studies that have shown Ostim® absorbable nanocrystalline hydroxyapatite paste enhances outcomes and reduces the risk of complications when used to repair bone defects in long-bone fractures in trauma patients. NCHA paste augmentation is suitable for use in traumatic long-bone fractures.


Assuntos
Substitutos Ósseos , Fraturas Ósseas , Humanos , Estudos Retrospectivos , Substitutos Ósseos/uso terapêutico , Substitutos Ósseos/química , Estudos de Casos e Controles , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/cirurgia , Durapatita/uso terapêutico , Durapatita/química , Consolidação da Fratura , Resultado do Tratamento
2.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153127

RESUMO

The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio , Fêmur , Gelatina , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/terapia , Fosfatos , Estrôncio , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Técnicas de Cocultura , Feminino , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Gelatina/química , Gelatina/farmacologia , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Fosfatos/química , Fosfatos/farmacologia , Ratos , Ratos Sprague-Dawley , Estrôncio/química , Estrôncio/farmacologia
3.
Int Orthop ; 42(2): 247-258, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273837

RESUMO

The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6-8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between "vital" (hypertrophic) and "avital" (hypo-/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The "diamond concept" units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.


Assuntos
Diáfises/lesões , Fraturas Ósseas/complicações , Fraturas não Consolidadas/cirurgia , Custos de Cuidados de Saúde/estatística & dados numéricos , Adulto , Pinos Ortopédicos , Transplante Ósseo/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diáfises/cirurgia , Feminino , Fixação de Fratura/métodos , Consolidação da Fratura/fisiologia , Fraturas Ósseas/cirurgia , Fraturas não Consolidadas/economia , Fraturas não Consolidadas/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Resultado do Tratamento
4.
Bioengineering (Basel) ; 10(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892933

RESUMO

In this study, the in vitro and in vivo bone formation behavior of mesoporous bioactive glass (MBG) particles incorporated in a pasty strontium-containing calcium phosphate bone cement (pS100G10) was studied in a metaphyseal fracture-defect model in ovariectomized rats and compared to a plain pasty strontium-containing calcium phosphate bone cement (pS100) and control (empty defect) group, respectively. In vitro testing showed good cytocompatibility on human preosteoblasts and ongoing dissolution of the MBG component. Neither the released strontium nor the BMG particles from the pS100G10 had a negative influence on cell viability. Forty-five female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) pS100 (n = 15), (2) pS100G10 (n = 15), and (3) empty defect (n = 15). Twelve weeks after bilateral ovariectomy and multi-deficient diet, a 4 mm wedge-shaped fracture-defect was created at the metaphyseal area of the left femur in all animals. The originated fracture-defect was substituted with pS100 or pS100G10 or left empty. After six weeks, histomorphometrical analysis revealed a statistically significant higher bone volume/tissue volume ratio in the pS100G10 group compared to the pS100 (p = 0.03) and empty defect groups (p = 0.0001), indicating enhanced osteoconductivity with the incorporation of MBG. Immunohistochemistry revealed a significant decrease in the RANKL/OPG ratio for pS100 (p = 0.004) and pS100G10 (p = 0.003) compared to the empty defect group. pS100G10 showed a statistically higher expression of BMP-2. In addition, a statistically significant higher gene expression of alkaline phosphatase, osteoprotegerin, collagen1a1, collagen10a1 with a simultaneous decrease in RANKL, and carbonic anhydrase was seen in the pS100 and pS100G10 groups compared to the empty defect group. Mass spectrometric imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the release of Sr2+ ions from both pS100 and pS100G10, with a gradient into the interface region. ToF-SIMS imaging also revealed that resorption of the MBG particles allowed for new bone formation in cement pores. In summary, the current work shows better bone formation of the injectable pasty strontium-containing calcium phosphate bone cement with incorporated mesoporous bioactive glass compared to the bioactive-free bone cement and empty defects and can be considered for clinical application for osteopenic fracture defects in the future.

5.
Biomaterials ; 157: 1-16, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29216500

RESUMO

The purpose of this work was to investigate new bone formation in macroporous iron foams coated with strontium (FeSr) or bisphosphonate (FeBiP) compared to plain iron foam (Fe) and empty defect in a critical size metaphyseal bone defect model in ovariectomized rats. 60 female rats were subjected to bilateral ovariectomy and multi-deficient diet for 3 months. A 4 mm wedge shaped metaphyseal osteotomy was created, fixed with a mini-plate and subsequently filled with Fe, FeSr, FeBiP or left empty. After 6 weeks, µCt analysis revealed a statistically significant increased bone formation at the implant interface in FeSr compared to FeBiP (p = 0.035) and Fe (p = 0.002), respectively. Increased mineralized tissue was also seen within the pores in FeSr (p = 0.023) compared to Fe. Histomorphometry revealed significantly increased bone formation at the implant interface in FeSr (p < 0.001) and FeBiP (p = 0.006) compared to plain Fe with increased osteoblast and decreased osteoclast activity in combination with increased BMP2 and decreased RANKL/OPG in immunohistochemistry. ToF-SIMS analysis showed overlapping Ca signals with Fe for both FeSr and FeBiP thereby indicating tissue in-growth into the scaffolds. In conclusion, iron foam with strontium or bisphosphonate coating are of further interest in metaphyseal fracture defects in osteopenic bone.


Assuntos
Difosfonatos/farmacologia , Consolidação da Fratura , Ferro/química , Osteogênese/efeitos dos fármacos , Fraturas por Osteoporose/tratamento farmacológico , Estrôncio/farmacologia , Alicerces Teciduais/química , Animais , Conservadores da Densidade Óssea/farmacologia , Feminino , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/patologia , Ovariectomia/efeitos adversos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA