Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(11): e202216557, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36510474

RESUMO

Passivation of stainless steel by additives forming mass-transport blocking layers is widely practiced, where Cr element is added into bulk Fe-C forming the Cr2 O3 -rich protective layer. Here we extend the long-practiced passivation concept to Si anodes for lithium-ion batteries, incorporating the passivator of LiF/Li2 CO3 into bulk Si. The passivation mechanism is studied by various ex situ characterizations, redox peak contour maps, thickness evolution tests, and finite element simulations. The results demonstrate that the passivation can enhance the (de)lithiation of Li-Si alloys, induce the formation of F-rich solid electrolyte interphase, stabilize the Si/LiF/Li2 CO3 composite, and mitigate the volume change of Si anodes upon cycling. The 3D passivated Si anode can fully retain a high capacity of 3701 mAh g-1 after 1500 cycles and tolerate high rates up to 50C. This work provides insight into how to construct durable Si anodes through effective passivation.

2.
Phys Chem Chem Phys ; 18(3): 1644-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26672489

RESUMO

Hematite is a promising material for photoelectrochemical (PEC) water splitting. While it has a low bandgap of ∼2.1 eV it is still larger than the optimal value of ∼1.8 eV. Previous work on epitaxial films has shown that Cr-doping leads to a shift of the bandgap as measured optically, but more importantly, also as measured by photoconductivity - to a value as low as 1.6 eV. We extend this work to polycrystalline films and attempt to use Cr-doping to lower the photon energy for which photocurrent can be generated. Our polycrystalline films show strong agreement with epitaxial films with regards to optical measurements of the direct and indirect bandgap. Furthermore, we find that Cr-doped polycrystalline films show photoconductivity at notably lower photon energies than undoped films, consistent with epitaxial results. However, when using Cr-doped films for photoelectrochemistry we find little to no shift of the photocurrent onset. We outline a number of proposals for why this could be the case, with a focus on the possibility of the existence of separate O 2p and Cr 3d states that would impact PEC but not PC behaviour.

3.
Phys Chem Chem Phys ; 18(46): 31958-31965, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27844065

RESUMO

Doped BiVO4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO4. Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W6+ for V5+ in BiVO4. This is shown to result in the presence of inter-band gap states related to electrons at V4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO4.

4.
ChemSusChem ; 14(5): 1370-1376, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427393

RESUMO

The dynamic information of lithium-ion battery active materials obtained from coin cell-based in-situ characterizations might not represent the properties of the active material itself because many other factors in the cell could have impacts on the cell performance. To address this problem, a single particle cell was developed to perform the in-situ characterization without the interference of inactive materials in the battery electrode as well as the X-ray-induced damage. In this study, the dynamic morphological and phase changes of selenium-doped germanium (Ge0.9 Se0.1 ) at the single particle level were investigated via synchrotron-based in-situ transmission X-ray microscopy. The results demonstrate the good reversibility of Ge0.9 Se0.1 at high cycling rate that helps understand its good cycling performance and rate capability. This in-situ and operando technique based on a single particle battery cell provides an approach to understanding the dynamic electrochemical processes of battery materials during charging and discharging at the particle level.

5.
Adv Mater ; 27(39): 6063-7, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26332655

RESUMO

LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA