Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 25(20): 205606, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24786466

RESUMO

Glancing angle co-deposition of well-separated W-Fe nanocolumns was carried out using a W oblique angle sputter source and a Fe confocal incidence source. As-deposited nanocolumns with an overall composition of W64.6Fe35.4 (at.%) exhibited an average column width w nc of 77 ± 15 nm with predominant growth in the ß-W phase. With the aim of synthesizing highly porous nanostructures, the as-deposited precursor W-Fe nanocolumnar thin films were immersed in aqueous HNO3 solution for various dealloying durations (t d ). Formation of nanoflake-, nanocactus-, and nanoblade-like structures were observed during the dealloying treatment, as a result of selective dissolution of Fe from the W-Fe precursor films and simultaneous oxidation of W adatoms. By increasing the dealloying duration, the Fe concentration within the film reduced drastically and the film thickness increased by about three times in comparison to the as-deposited film. The dealloyed film exhibited an overall composition of W95.6Fe4.4, where the effective surface area of the film increased substantially. It was found that W adatom diffusion and subsequent rearrangement are crucially important in determining the resultant thin film morphology. The morphological development, corresponding compositions and crystallographic properties of different nanostructures were found to be significantly dependent on the dealloying duration. For optimized processing parameters, the selective dissolution process led to formation of single crystal monoclinic WO3 nanoblades, with growth along [002] and [020] axes.

2.
Nanotechnology ; 25(19): 195101, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24763247

RESUMO

The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs).Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.


Assuntos
Antibacterianos/farmacologia , Nanoestruturas , Titânio/farmacologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Hemípteros , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
3.
Adv Mater ; 35(18): e2211859, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852540

RESUMO

Metal-organic framework (MOF)-based membranes, featuring potential molecular sieving effects and therefore capable of surmounting the ubiquitous trade-off between membrane selectivity and permeability, hold great promise for multitudinous chemical separations. Nevertheless, it remains highly challenging for the large-area fabrication of ultrathin MOF membranes with variable thickness, great homogeneity, and preferential orientation. Herein, this work reports the facile fabrication of ultrathin (down to 20 nm) NUS-8 membranes in large-area (>200 cm2 ) yet with great homogeneity and texture along (00l) direction due to the superior solution processability of the as-synthesized NUS-8 nanosheets. The resultant NUS-8 membranes with good adhesion properties and certain flexibility exhibit excellent rejections (>98% for Mg2+ and Al3+ , and dyes with molecular weights larger than 585.5 g mol-1 ) toward aqueous separation of various metal ions and dyes at modest permeance (1-3.2 L m-2 h-1 bar-1 ) due to the well-aligned structures. Such separation performance outstands among polymetric membranes, thin-film composite membranes, mixed matrix membranes, and other MOF membranes reported in the literature. The separation mechanism is reasonably discussed based on the experimental and theoretical results. This study opens up novel perspectives for preparing ultrathin and large-area MOF membranes using the solution processability of MOFs.

4.
ACS Nano ; 16(1): 221-231, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35001610

RESUMO

Defect states dominate the performance of low-dimensional nanoelectronics, which deteriorate the serviceability of devices in most cases. But in recent years, some intriguing functionalities are discovered by defect engineering. In this work, we demonstrate a bifunctional memory device of a MoS2/BiFeO3/SrTiO3 van der Waals heterostructure, which can be programmed and erased by solely one kind of external stimuli (light or electrical-gate pulse) via engineering of oxygen-vacancy-based solid-ionic gating. The device shows multibit electrical memory capability (>22 bits) with a large linearly tunable dynamic range of 7.1 × 106 (137 dB). Furthermore, the device can be programmed by green- and red-light illuminations and then erased by UV light pulses. Besides, the photoresponse under red-light illumination reaches a high photoresponsivity (6.7 × 104 A/W) and photodetectivity (2.12 × 1013 Jones). These results highlighted solid-ionic memory for building up multifunctional electronic and optoelectronic devices.

5.
Adv Mater ; 33(29): e2101257, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057259

RESUMO

Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.

6.
ACS Sens ; 5(5): 1474-1481, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32367715

RESUMO

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.


Assuntos
Estruturas Metalorgânicas , Benzeno , Gases
7.
Sci Rep ; 6: 36733, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827424

RESUMO

Formamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55-65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m2, while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2PbBr3 widely known as FAPbBr3 nanocrystals in literature.

8.
ACS Comb Sci ; 16(12): 678-85, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25369349

RESUMO

Ti-Ni-Au thin film materials libraries were prepared from multilayer precursors by combinatorial sputtering. The materials libraries were annealed at 500, 600, and 700 °C for 1 h and then characterized by high-throughput methods to investigate the relations between composition, structure and functional properties. The identified relations were visualized in functional phase diagrams. The goal is to identify composition regions that are suitable as high temperature shape memory alloys. Phase transforming compositions were identified by electrical resistance measured during thermal cycles in the range of -20 and 250 °C. Three phase transformation paths were confirmed: (1) B2-R, (2) B2-R-B19', and (3) B2-B19. For the materials library annealed at 500 °C only the B2-R transformation was observed. For the materials libraries annealed at 600 and 700 °C, all transformation paths were observed. High transformation temperatures (M(s) ≈ 100 °C) were only obtained by annealing at 600 or 700 °C, and with compositions of Ti ≈ 50 at. % and Au > 20 at. %. This is the composition range that undergoes B2-B19 transformation. The phase transformation behaviors were explained according to the compositional and annealing temperature dependence of phase/structure formation, as revealed by X-ray diffraction analysis of the materials libraries.


Assuntos
Ligas/síntese química , Ouro/química , Níquel/química , Titânio/química , Ligas/química , Técnicas de Química Combinatória , Microscopia Eletrônica de Varredura , Transição de Fase , Difração de Raios X
9.
ACS Comb Sci ; 14(1): 25-30, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22126321

RESUMO

For different areas of combinatorial materials science, it is desirable to have multiple materials libraries: especially for irreversible high-throughput studies, like, for example, corrosion resistance testing in different media or annealing of complete materials libraries at different temperatures. Therefore a new combinatorial sputter-deposition process was developed which yields 24 materials libraries in one experiment on a single substrate. It is discussed with the example of 24 Ti-Ni-Ag materials libraries. They are divided based on the composition coverage and orientation of composition gradient into two sets of 12 nearly identical materials libraries. Each materials library covers at least 30-40% of the complete ternary composition range. An acid etch test in buffered-HF solution was performed, illustrating the feasibility of our approach for destructive materials characterization. The results revealed that within the composition range of Ni < 30 at.%, the films were severely etched. The composition range which shows reversible martensitic transformations was confirmed to be outside this region. The high output of the present method makes it attractive for combinatorial studies requiring multiple materials libraries.


Assuntos
Ligas/síntese química , Técnicas de Química Combinatória/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/síntese química , Ligas/química , Estudos de Viabilidade , Transição de Fase , Bibliotecas de Moléculas Pequenas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA