Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36202091

RESUMO

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Assuntos
Exposição Ambiental , Expossoma , Gravidez , Lactente , Feminino , Humanos , Pré-Escolar , Exposição Ambiental/efeitos adversos , Xenobióticos/toxicidade , Desenvolvimento Fetal
2.
Small ; 20(27): e2308148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38290809

RESUMO

Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.


Assuntos
Células Epiteliais Alveolares , Autofagia , Compostos de Boro , Humanos , Compostos de Boro/química , Compostos de Boro/farmacologia , Autofagia/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Nanoestruturas/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328723

RESUMO

Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.


Assuntos
Manganês , Trofoblastos , Transporte Biológico , Feminino , Humanos , Ferro/metabolismo , Manganês/metabolismo , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
4.
J Nanobiotechnology ; 19(1): 144, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001140

RESUMO

BACKGROUND: Pregnant women and developing fetuses comprise a particularly vulnerable population as multiple studies have shown associations between prenatal air pollution exposure and adverse pregnancy outcomes. However, the mechanisms underlying the observed developmental toxicity are mostly unknown, in particular, if pollution particles can cross the human placenta to reach the fetal circulation. RESULTS: Here, we investigated the accumulation and translocation of diesel exhaust particles (DEPs), as a model particle for combustion-derived pollution, in human perfused placentae using label-free detection by femtosecond pulsed laser illumination. The results do not reveal a significant particle transfer across term placentae within 6 h of perfusion. However, DEPs accumulate in placental tissue, especially in the syncytiotrophoblast layer that mediates a wealth of essential functions to support and maintain a successful pregnancy. Furthermore, DEPs are found in placental macrophages and fetal endothelial cells, showing that some particles can overcome the syncytiotrophoblasts to reach the fetal capillaries. Few particles are also observed inside fetal microvessels. CONCLUSIONS: Overall, we show that DEPs accumulate in key cell types of the placental tissue and can cross the human placenta, although in limited amounts. These findings are crucial for risk assessment and protection of pregnant women and highlight the urgent need for further research on the direct and indirect placenta-mediated developmental toxicity of ambient particulates.


Assuntos
Nanopartículas/química , Placenta/metabolismo , Emissões de Veículos/análise , Transporte Biológico , Células Endoteliais , Monitoramento Ambiental/métodos , Poluição Ambiental , Feminino , Humanos , Nanopartículas/toxicidade , Perfusão , Gravidez , Emissões de Veículos/toxicidade
5.
Arch Toxicol ; 95(3): 837-852, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33319326

RESUMO

E 551, also known as synthetic amorphous silica (SAS), is the second most produced food additive. However, according to the re-evaluation of E 551 by the European Food Safety Authority (EFSA) in 2018, the amount of available data on the oral toxicity of food grade E 551 is still insufficient for reliable risk assessment. To close this gap, this study aimed to investigate six food-grade SAS with distinct physicochemical properties on their interaction with the intestinal barrier using advanced in vitro intestinal co-cultures and to identify potential structure-activity relationships. A mucus-secreting Caco-2/HT-29/Raji co-culture model was treated with up to 50 µg/ml SAS for 48 h, which represents a dose range relevant to dietary exposure. No effects on cell viability, barrier integrity, microvilli function or the release of inflammatory cytokine were detected after acute exposure. Slight biological responses were observed for few SAS materials on iron uptake and gene expression levels of mucin 1 and G-protein coupled receptor 120 (GPR120). There was no clear correlation between SAS properties (single or combined) and the observed biological responses. Overall, this study provides novel insights into the short-term impact of food-relevant SAS with distinct characteristics on the intestinal epithelium including a range of intestine-specific functional endpoints. In addition, it highlights the importance of using advanced intestinal co-cultures embracing relevant cell types as well as a protective mucus barrier to achieve a comprehensive understanding of the biological response of food additives at the intestinal barrier in vitro.


Assuntos
Aditivos Alimentares/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Dióxido de Silício/toxicidade , Células CACO-2 , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Aditivos Alimentares/administração & dosagem , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Dióxido de Silício/administração & dosagem
6.
Part Fibre Toxicol ; 17(1): 31, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653006

RESUMO

BACKGROUND: Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY: Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION: Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Nanoestruturas/toxicidade , Animais , Feminino , Feto , Humanos , Estresse Oxidativo , Placenta , Gravidez , Distribuição Tecidual
7.
Chem Res Toxicol ; 31(8): 641-642, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036046

RESUMO

While placental translocation and direct toxicity to fetal tissue of traversed nanomaterials has been a key focus of developmental toxicity studies, the release of maternal and fetal mediators that indirectly interfere with fetal development and health later in life lacks systematic insights and deserves special attention.


Assuntos
Nanoestruturas/toxicidade , Teratogênicos/toxicidade , Animais , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Humanos , Exposição Materna , Gravidez
8.
J Nanobiotechnology ; 16(1): 79, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309365

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) are promising candidates to design the next generation NP-based drug formulations specifically treating maternal, fetal or placental complications with reduced side effects. Profound knowledge on AuNP distribution and effects at the human placental barrier in dependence on the particle properties and surface modifications, however, is currently lacking. Moreover, the predictive value of human placental transfer models for NP translocation studies is not yet clearly understood, in particular with regards to differences between static and dynamic exposures. To understand if small (3-4 nm) AuNPs with different surface modifications (PEGylated versus carboxylated) are taken up and cross the human placental barrier, we performed translocation studies in a static human in vitro co-culture placenta model and the dynamic human ex vivo placental perfusion model. The samples were analysed using ICP-MS, laser ablation-ICP-MS and TEM analysis for sensitive, label-free detection of AuNPs. RESULTS: After 24 h of exposure, both AuNP types crossed the human placental barrier in vitro, although in low amounts. Even though cellular uptake was higher for carboxylated AuNPs, translocation was slightly increased for PEGylated AuNPs. After 6 h of perfusion, only PEGylated AuNPs were observed in the fetal circulation and tissue accumulation was similar for both AuNP types. While PEGylated AuNPs were highly stable in the biological media and provided consistent results among the two placenta models, carboxylated AuNPs agglomerated and adhered to the perfusion device, resulting in different cellular doses under static and dynamic exposure conditions. CONCLUSIONS: Gold nanoparticles cross the human placental barrier in limited amounts and accumulate in placental tissue, depending on their size- and/or surface modification. However, it is challenging to identify the contribution of individual characteristics since they often affect colloidal particle stability, resulting in different biological interaction in particular under static versus dynamic conditions. This study highlights that human ex vivo and in vitro placenta models can provide valuable mechanistic insights on NP uptake and translocation if accounting for NP stability and non-specific interactions with the test system.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Placenta/metabolismo , Linhagem Celular , Técnicas de Cocultura , Coloides/química , Feminino , Humanos , Cinética , Perfusão , Gravidez , Distribuição Tecidual
9.
Development ; 141(7): 1553-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598164

RESUMO

Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin ß1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.


Assuntos
Bainha de Mielina/fisiologia , Nervos Periféricos/fisiologia , Sistema Nervoso Periférico/fisiologia , Profilinas/fisiologia , Animais , Transporte Axonal/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Neuropeptídeos/fisiologia , Pseudópodes/genética , Células de Schwann/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
10.
Environ Sci Technol ; 49(17): 10616-23, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251010

RESUMO

Studies combining both the quantification of free nanoparticle release and the toxicological investigations of the released particles from actual nanoproducts in a real-life exposure scenario are urgently needed, yet very rare. Here, a new measurement method was established to quantify the amount of free-standing and protruding multiwalled carbon nanotubes (MWCNTs) in the respirable fraction of particles abraded from a MWCNT-epoxy nanocomposite. The quantification approach involves the prelabeling of MWCNTs with lead ions, nanocomposite production, abrasion and collection of the inhalable particle fraction, and quantification of free-standing and protruding MWCNTs by measuring the concentration of released lead ions. In vitro toxicity studies for genotoxicity, reactive oxygen species formation, and cell viability were performed using A549 human alveolar epithelial cells and THP-1 monocyte-derived macrophages. The quantification experiment revealed that in the respirable fraction of the abraded particles, approximately 4000 ppm of the MWCNTs were released as exposed MWCNTs (which could contact lung cells upon inhalation) and approximately 40 ppm as free-standing MWCNTs in the worst-case scenario. The release of exposed MWCNTs was lower for nanocomposites containing agglomerated MWCNTs. The toxicity tests revealed that the abraded particles did not induce any acute cytotoxic effects.


Assuntos
Resinas Epóxi/química , Nanotubos de Carbono/toxicidade , Material Particulado/toxicidade , Testes de Toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Íons , Pulmão/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Sci Technol Adv Mater ; 16(4): 044602, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877820

RESUMO

Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

12.
Adv Sci (Weinh) ; : e2401060, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767187

RESUMO

Exposure to nanoparticles (NPs) in pregnancy is increasingly linked to adverse effects on embryo-fetal development and health later in life. However, the developmental toxicity mechanisms of NPs are largely unknown, in particular potential effects on the placental secretome, which orchestrates many developmental processes pivotal for pregnancy success. This study demonstrates extensive material- and pregnancy stage-specific deregulation of placental signaling from a single exposure of human placental explants to physiologically relevant concentrations of engineered (silica (SiO2) and titanium dioxide (TiO2) NPs) and environmental NPs (diesel exhaust particles, DEPs). This includes a multitude of secreted inflammatory, vascular, and endocrine placental factors as well as extracellular vesicle (EV)-associated proteins. Moreover, conditioned media (CM) from NP-exposed explants induce pronounced anti-angiogenic and anti-vasculogenic effects, while early neurodevelopmental processes are only marginally affected. These findings underscore the potential of metal oxide NPs and DEPs for widespread interference with the placental secretome and identify vascular morphogenesis as a sensitive outcome for the indirect developmental toxicity of different NPs. Overall, this work has profound implications for the future safety assessment of NPs for industrial, commercial, or medical applications in pregnancy, which should consider placenta-mediated toxicity by holistic secretomics approaches to ensure the development of safe nanotechnologies.

13.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

14.
J Hazard Mater ; 473: 134686, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788582

RESUMO

Hexagonal boron nitride (hBN) is an emerging two-dimensional material attracting considerable attention in the industrial sector given its innovative physicochemical properties. Potential risks are associated mainly with occupational exposure where inhalation and skin contact are the most relevant exposure routes for workers. Here we aimed at characterizing the effects induced by composites of thermoplastic polyurethane (TPU) and hBN, using immortalized HaCaT skin keratinocytes and BEAS-2B bronchial epithelial cells. The composite was abraded using a Taber® rotary abraser and abraded TPU and TPU-hBN were also subjected to photo-Fenton-mediated degradation mimicking potential weathering across the product life cycle. Cells were exposed to the materials for 24 h (acute exposure) or twice per week for 4 weeks (chronic exposure) and evaluated with respect to material internalization, cytotoxicity, and proinflammatory cytokine secretion. Additionally, comprehensive mass spectrometry-based proteomics and metabolomics (secretomics) analyses were performed. Overall, despite evidence of cellular uptake of the material, no significant cellular and/or protein expression profiles alterations were observed after acute or chronic exposure of HaCaT or BEAS-2B cells, identifying only few pro-inflammatory proteins. Similar results were obtained for the degraded materials. These results support the determination of hazard profiles associated with cutaneous and pulmonary hBN-reinforced polymer composites exposure.


Assuntos
Compostos de Boro , Poliuretanos , Humanos , Poliuretanos/toxicidade , Poliuretanos/química , Compostos de Boro/química , Compostos de Boro/toxicidade , Linhagem Celular , Pele/efeitos dos fármacos , Pele/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
15.
Environ Sci Nano ; 10(12): 3439-3449, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38073860

RESUMO

Nanoplastics, solid polymer particles smaller than 1 µm, are suspected to be widely present in the environment, food and air, and may pose a potential threat to human health. Detecting nanoplastics in and associated with individual cells is crucial to understand their mechanisms of toxicity and potential harm. In this context, we developed a single-cell inductively coupled plasma time-of-flight mass spectrometry (sc-ICP-TOFMS) method for the sensitive and rapid quantification of metal-doped model nanoplastics in human cells. By providing multi-elemental fingerprints of both the nanoplastics and the cells, this approach can be advantageous in laboratory toxicological studies as it allows for the simultaneous acquisition of a full mass spectrum with high time resolution. As a proof-of-concept study, we exposed two different human cell lines relevant to inhalation exposures (A549 alveolar epithelial cells and THP-1 monocytes) to Pd-doped nanoplastics. The sc-ICP-TOFMS analysis revealed a similar dose-dependent endocytotic capacity of THP-1 and A549 cells for nanoplastics uptake, and particle internalization was confirmed by transmission electron microscopy. Moreover, single-cell quantification showed that a considerable proportion of the exposed cells (72% of THP-1; 67% of A549) did not associate with any nanoplastics after exposure to 50 µg L-1 for 24 h. This highlights the importance to include single-cell analysis in the future safety assessment of nanoplastics in order to account for heterogeneous uptake within cell populations and to identify the origins and response trajectories of nanoplastics in biological tissues. In this regard, sc-ICP-TOFMS can be a powerful approach to provide quantitative data on nanoplastics-cell associations at single cell level for a large number of individual cells.

16.
NanoImpact ; 29: 100452, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717017

RESUMO

Graphene and its derivatives are attractive materials envisaged to enable a wealth of novel applications in many fields including energy, electronics, composite materials or health. A comprehensive understanding of the potential adverse effects of graphene-related materials (GRM) in humans is a prerequisite to the safe use of these promising materials. Here, we exploited gene expression profiling to identify transcriptional responses and toxicity pathways induced by graphene oxide (GO) and graphene nanoplatelets (GNP) in human macrophages. Primary human monocyte-derived macrophages (MDM) and a human macrophage cell line, i.e. differentiated THP-1 cells, were exposed to 5 or 20 µg/mL GO and GNP for 6 and 24 h to capture early and more persistent acute responses at realistic or slightly overdose concentrations. GO and GNP induced time-, dose- and macrophage type-specific differential expression of a substantial number of genes with some overlap between the two GRM types (up to 384 genes (9.6%) or 447 genes (20.4%) in THP-1 or MDM, respectively) but also a high number of genes exclusively deregulated from each material type. Furthermore, GRM responses on gene expression were highly different from those induced by inflammogenic material crystalline quartz (maximum of 64 (2.3%) or 318 (11.3%) common genes for MDM treated with 20 µg/mL GO and GNP, respectively). Further bioinformatics analysis revealed that GNP predominantly activated genes controlling inflammatory and apoptotic pathways whereas GO showed only limited inflammatory responses. Interestingly, both GRM affected the expression of genes related to antigen processing and presentation and in addition, GO activated pathways of neutrophil activation, degranulation and immunity in MDM. Overall, this study provides an extensive resource of potential toxicity mechanisms for future safety assessment of GRM in more advanced model systems to verify if the observed changes in gene expression in human macrophages could lead to long-term consequences on human health.


Assuntos
Grafite , Nanoestruturas , Humanos , Grafite/química , Nanoestruturas/química , Macrófagos , Perfilação da Expressão Gênica
17.
J Mater Chem B ; 11(42): 10097-10107, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842821

RESUMO

With its high mechanical strength and its remarkable thermal and electrical properties, suspended graphene has long been expected to find revolutionary applications in optoelectronics or as a membrane in nano-devices. However, the lack of efficient transfer and patterning processes still limits its potential. In this work, we report an optimized anthracene-based transfer process to suspend few layers of graphene (1-, 2- and 4-layers) in the millimeter range (up to 3 mm) with high reproducibility. We have explored the advantages and limitations for patterning of these membranes with micrometer-resolution by focused ion beam (FIB) and picosecond pulsed laser ablation techniques. The FIB approach offers higher patterning resolution but suffers from the low throughput. We demonstrate that cold laser ablation is a fast and flexible method for micro-structuring of suspended graphene. One promising field of application of ultimately thin, microporous graphene membranes is their use as next-generation cell culture supports as alternative to track-etched polymer membranes, which often exhibit poor permeability and limited cell-to-cell communication across the membranes. To this end, we confirmed good adhesion and high viability of placental trophoblast cells cultivated on suspended porous graphene membranes without rupturing of the membranes. Overall, there is high potential for the further development of ultrathin suspended graphene membranes for many future applications, including their use for biobarrier cell culture models to enable predictive transport and toxicity assessment of drugs, environmental pollutants, and nanoparticles.


Assuntos
Grafite , Feminino , Gravidez , Humanos , Membranas Artificiais , Reprodutibilidade dos Testes , Placenta , Técnicas de Cultura de Células
18.
Toxicol Appl Pharmacol ; 264(1): 94-103, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22842014

RESUMO

Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO(2) and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO(2) or ZnO nanoparticles at concentrations from 1 to 100µg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO(2) nanoparticles. Non-toxic exposure, 10µg/mL, to TiO(2) and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO(2) nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO(2) or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO(2) and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions.


Assuntos
Linfócitos/efeitos dos fármacos , Nanopartículas , Titânio/toxicidade , Óxido de Zinco/toxicidade , Caspase 1/metabolismo , Comunicação Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Células Matadoras Naturais , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Monócitos/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Titânio/administração & dosagem
19.
Pharmaceutics ; 14(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35456627

RESUMO

Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.

20.
Sci Rep ; 12(1): 11583, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803968

RESUMO

The COVID-19 pandemic has caused considerable interest worldwide in antiviral surfaces, and there has been a dramatic increase in the research and development of innovative material systems to reduce virus transmission in the past few years. The International Organization for Standardization (ISO) norms 18,184 and 21,702 are two standard methods to characterize the antiviral properties of porous and non-porous surfaces. However, during the last years of the pandemic, a need for faster and inexpensive characterization of antiviral material was identified. Therefore, a complementary method based on an Inactivated Virus System (InViS) was developed to facilitate the early-stage development of antiviral technologies and quality surveillance of the production of antiviral materials safely and efficiently. The InViS is loaded with a self-quenched fluorescent dye that produces a measurable increase in fluorescence when the viral envelope disintegrates. In the present work, the sensitivity of InViS to viral disintegration by known antiviral agents is demonstrated and its potential to characterize novel materials and surfaces is explored. Finally, the InViS is used to determine the fate of viral particles within facemasks layers, rendering it an interesting tool to support the development of antiviral surface systems for technical and medical applications.


Assuntos
COVID-19 , Vírus , Antivirais/farmacologia , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA