Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795638

RESUMO

Antiviral medicines to treat COVID-19 are still scarce. Porphyrins and porphyrin derivatives (PDs) usually present broad-spectrum antiviral activity with low risk of resistance development. In fact, some PDs are clinically approved to be used in anti-cancer photodynamic therapy and repurposing clinically approved PDs might be an alternative to treat COVID-19. Here, we characterize the ability of temoporfin, verteporfin, talaporfin and redaporfin to inactivate SARS-CoV-2 infectious particles. PDs light-dependent and -independent effect on SARS-CoV-2 infectivity were evaluated. PDs photoactivation successfully inactivated SARS-CoV-2 with very low concentrations and light dose. However, only temoporfin and verteporfin inactivated SARS-CoV-2 in the dark, being verteporfin the most effective. PDs treatment reduced viral load in infected Caco-2 cells, while not inducing cytotoxicity. Furthermore, light-independent treatment with temoporfin and verteporfin act on early stages of viral infection. Using lipid vehicles as membrane models, we characterized PDs interaction to the viral envelope. Verteporfin presented the lowest IC50 for viral inactivation and the highest partition coefficients (Kp) towards lipid bilayers. Curiously, although temoporfin and redaporfin presented similar Kps, redaporfin did not present light-independent antiviral activity, and only temoporfin and verteporfin caused lipid membrane disorder. In fact, redaporfin is located closer to the bilayer surface, while temoporfin and verteporfin are located closer to the centre. Our results suggest that viral envelope affinity, with penetration and destabilization of the lipid bilayer, seems critical to mediate PDs antiviral activity. Altogether, these findings open new avenues for the off-label application of temoporfin and verteporfin in the systemic treatment of COVID-19.


Assuntos
Antivirais , Reposicionamento de Medicamentos , Porfirinas , SARS-CoV-2 , Humanos , Porfirinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Células CACO-2 , Tratamento Farmacológico da COVID-19 , Antineoplásicos/farmacologia , Envelope Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Células Vero , COVID-19/virologia
2.
ACS Chem Biol ; 17(7): 1831-1843, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500279

RESUMO

Paramyxoviruses are enveloped viruses harboring a negative-sense RNA genome that must enter the host's cells to replicate. In the case of the parainfluenza virus, the cell entry process starts with the recognition and attachment to target receptors, followed by proteolytic cleavage of the fusion glycoprotein (F) protein, exposing the fusion peptide (FP) region. The FP is responsible for binding to the target membrane, and it is believed to play a crucial role in the fusion process, but the mechanism by which the parainfluenza FP (PIFP) promotes membrane fusion is still unclear. To elucidate this matter, we performed biophysical experimentation of the PIFP in membranes, together with coarse grain (CG) and atomistic (AA) molecular dynamics (MD) simulations. The simulation results led to the pinpointing of the most important PIFP amino acid residues for membrane fusion and show that, at high concentrations, the peptide induces the formation of a water-permeable porelike structure. This structure promotes lipid head intrusion and lipid tail protrusion, which facilitates membrane fusion. Biophysical experimental results validate these findings, showing that, depending on the peptide/lipid ratio, the PIFP can promote fusion and/or membrane leakage. Our work furthers the understanding of the PIFP-induced membrane fusion process, which might help foster development in the field of viral entry inhibition.


Assuntos
Fusão de Membrana , Infecções por Paramyxoviridae , Humanos , Lipídeos , Fusão de Membrana/fisiologia , Peptídeos , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA