Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341660

RESUMO

MOTIVATION: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software development practices to avoid errors in individual tools and in the connections between them. RESULTS: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous biomedical workflow testing and paves the way toward reducing computational errors in biomedicine. AVAILABILITY AND IMPLEMENTATION: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https://github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.


Assuntos
Biologia Computacional , Software , Algoritmos , Idioma , Fluxo de Trabalho
2.
Cancer Res Commun ; 4(9): 2463-2479, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39166898

RESUMO

Prostate cancer is frequently treated with radiotherapy. Unfortunately, aggressive radioresistant relapses can arise, and the molecular underpinnings of radioresistance are unknown. Modern clinical radiotherapy is evolving to deliver higher doses of radiation in fewer fractions (hypofractionation). We therefore analyzed genomic, transcriptomic, and proteomic data to characterize prostate cancer radioresistance in cells treated with both conventionally fractionated and hypofractionated radiotherapy. Independent of fractionation schedule, resistance to radiotherapy involved massive genomic instability and abrogation of DNA mismatch repair. Specific prostate cancer driver genes were modulated at the RNA and protein levels, with distinct protein subcellular responses to radiotherapy. Conventional fractionation led to a far more aggressive biomolecular response than hypofractionation. Testing preclinical candidates identified in cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. POLQ-modulated radioresistance in model systems and was predictive of it in large patient cohorts. The molecular response to radiation is highly multimodal and sheds light on prostate cancer lethality. SIGNIFICANCE: Radiation is standard of care in prostate cancer. Yet, we have little understanding of its failure. We demonstrate a new paradigm that radioresistance is fractionation specific and identified POLQ as a radioresistance modulator.


Assuntos
Neoplasias da Próstata , Proteogenômica , Tolerância a Radiação , Masculino , Humanos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Tolerância a Radiação/genética , Proteogenômica/métodos , Linhagem Celular Tumoral , DNA Polimerase teta , Instabilidade Genômica , Reparo de Erro de Pareamento de DNA , Regulação Neoplásica da Expressão Gênica , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Hipofracionamento da Dose de Radiação
3.
bioRxiv ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39282325

RESUMO

Summary: DNA sequencing is becoming more affordable and faster through advances in high-throughput technologies. This rise in data availability has contributed to the development of novel algorithms to elucidate previously obscure features and led to an increased reliance on complex workflows to integrate such tools into analyses pipelines. To facilitate the analysis of DNA sequencing data, we created metapipeline-DNA, a highly configurable and extensible pipeline. It encompasses a broad range of processing including raw sequencing read alignment and recalibration, variant calling, quality control and subclonal reconstruction. Metapipeline-DNA also contains configuration options to select and tune analyses while being robust to failures. This standardizes and simplifies the ability to analyze large DNA sequencing in both clinical and research settings. Availability: Metapipeline-DNA is an open-source Nextflow pipeline under the GPLv2 license and is freely available at https://github.com/uclahs-cds/metapipeline-DNA .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA