Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 6(41): 27379-27386, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693158

RESUMO

Photocatalysis has been studied and considered as a green and practical approach in addressing environmental pollution. However, factors that affect photocatalytic performance have not been systematically studied. In this work, we have presented a comprehensive roadmap for characterizing, interpreting, and reporting semiconductors' electrical and optical properties through routinely used techniques such as diffuse reflectance spectroscopy, electrochemical techniques (Mott-Schottky plots), photoluminescence, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy in the context of photocatalysis. Having precisely studied the band structure of three representative photocatalysts, we have presented and highlighted the essential information and details, which are critical and beneficial for studies of (1) band alignments, (2) redox potentials, and (3) defects. Further works with a comprehensive understanding of the band structure are desirable and hold great promise.

2.
Environ Pollut ; 286: 117510, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438483

RESUMO

Enhancing and investigating the photocatalytic activity over composites for new models remains a challenge. Here, an emerging S-scheme photocatalyst composed of 2D/0D g-C3N4 nanosheets-assisted SnO2 nanoparticles (g-C3N4/SnO2) is successfully synthesized and used for degrading nitrogen oxide (NO), which causes negative impacts on the environment. A wide range of characterization techniques confirms the successful synthesis of SnO2 nanoparticles, g-C3N4 nanosheets, and 2D/0D g-C3N4/SnO2 S-scheme photocatalysts via hydrothermal and annealing processes. Besides, the visible-light response is confirmed by optical analysis. The S-scheme charge transfer was elucidated by Density-Functional Theory (DFT) calculation, trapping experiments, and electron spin resonance (ESR). We found that intrinsic oxygen vacancies of SnO2 nanoparticles and S-scheme charge transfer addressed the limitation of other heterojunction types. It is notable that compared pure SnO2 nanoparticles and g-C3N4, g-C3N4/SnO2 offered the best photocatalytic NO degradation and photostability under visible light with the removal of more than 40% NO at 500 ppb throughout the experiment. Benefiting from the unique structural features, the new generation architectural structure of S-scheme heterojunction exhibited potential photocatalytic activity and it would simultaneously act more promising for environmental treatment in the coming years.


Assuntos
Luz , Óxido Nítrico , Catálise
3.
ACS Omega ; 5(32): 20438-20449, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832797

RESUMO

The pursuit of robust photocatalysts that can completely degrade organic contaminants with high performance as well as high energy efficiency, simplicity in preparation, and low cost is an appealing topic that potentially promotes photocatalysts for being used widely. Herein, we introduce a new and efficient SnO2/Bi2S3/BiOCl-Bi24O31Cl10 (SnO2/Bi2S3-Bi25) composite photocatalyst by taking advantage of the robust, simple, and potentially scalable one-pot synthesis, including the hydrothermal process followed by thermal decomposition. Interestingly, we observed the formation of BiOCl-Bi24O31Cl10 (abbreviated as Bi25) heterojunctions derived from reactions between Bi2S3 and SnCl4·5H2O precursor solutions under the hydrothermal condition and thermal decomposition of BiOCl. This Bi25 heterojunction acts as an interface to reduce the recombination of photogenerated electron-hole (e--h+) pairs as well as to massively enhance the visible light harvesting, thereby significantly enhancing the photocatalytic degradation performance of the as-prepared composite photocatalyst. In detail, the photocatalytic degradation of Rhodamine B (RhB) activated by visible light using 15% SnO2/Bi2S3-Bi25 shows the efficiency of 80.8%, which is superior compared to that of pure Bi2S3 (29.4%) and SnO2 (0.1%). The SnO2/Bi2S3-Bi25 composite photocatalyst also presents an excellent photostability and easy recovery from dye for recycling. The trapping test revealed that the photogenerated holes play a crucial factor during the photocatalytic process, whereas superoxide radicals are also formed but not involved in the photocatalytic process. Successful fabrication of SnO2/Bi2S3-Bi25 composite photocatalysts via a straightforward method with drastically enhanced photocatalytic performance under visible light activation would be useful for practical applications.

4.
Chemosphere ; 215: 323-332, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30321811

RESUMO

Titania (TiO2) as a commercial photocatalyst has been continually struggling due to the limitation of ultraviolet light response and the high recombination rate of photoinduced carriers. The development of heterojunction nanostructures provides great promise to achieve the activation by visible light and suppress the photoinduced electron-hole pairs recombination. Herein, we synthesized a SnO2 and TiO2 nanotube heterojunction (SnO2/TNT) via a one-step hydrothermal strategy and systematically investigated NO photocatalytic degradation over the SnO2/TNTs heterojunction under visible light at the parts per billion level. Various physicochemical characterization techniques were conducted to verify the physical and chemical properties of the materials. For example, the morphology and lattice spacings of the materials were examined by high-resolution TEM (HR-TEM) images and selected area electron diffraction (SAED) pattern, X-ray photoelectron spectroscopy (XPS) was employed to study the oxidation states and propose the band alignment diagram of the SnO2/TNTs heterojunction, and photoluminescence spectroscopy was employed for understanding of carrier's trapping, migration and transfer. The photocatalytic results show that the SnO2/TNTs heterojunction exhibits the superior photocatalytic performance, and the photocatalytic degradation efficiency of NO can reach 60% under visible light with effective inhibition of NO2 production. The excellent photocatalytic ability is due to the low recombination rate of the photoinduced electron-hole pairs. Furthermore, a trapping experiment was combined with electron spin resonance (ESR) and utilized to identify the involvement of reactive radicals in the photocatalysis process suggesting that and OH mediated pathways play a predominant role in NO removal.


Assuntos
Luz , Óxido Nítrico/química , Compostos de Estanho/química , Titânio/química , Catálise , Nanotubos/química , Oxirredução , Processos Fotoquímicos , Espectroscopia Fotoeletrônica
5.
RSC Adv ; 8(22): 12420-12427, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539414

RESUMO

Here, we synthesized copper(i) oxide and titanium dioxide nanotubes (TNTs) heterojunctions (HJs) by a photoreduction method using a low-power UV lamp without involving any additional steps, such as chemical reduction, surfactant, or protection agents. Transmission electron microscopy, X-ray diffraction, Raman scattering, X-ray photoelectron spectroscopy, diffuse reflectance spectra, and photoluminescence spectroscopy were carried out to verify the formation of a HJ between the Cu2O nanoparticles (Cu2O NPs) and TNTs. The efficiency and the rate of methylene blue photo-degradation over the Cu2O/TNTs HJ were found to be nearly double and triple compared to the isolated TNTs. The enhanced efficiency is attributed to the narrow band gap and defect states caused by the oxygen vacancies in the vicinity of HJs. Moreover, the type II band alignment of Cu2O NPs and TNTs naturally separates the photo-generated carriers and constrains the recombination process owing to the internal electric field across the Cu2O/TNTs interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA