Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Res ; 203: 111906, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418447

RESUMO

Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Humanos , Reprodução , Glândula Tireoide , Hormônios Tireóideos
2.
Genomics ; 113(3): 1589-1604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812898

RESUMO

Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.


Assuntos
Reparo do DNA , Histona-Lisina N-Metiltransferase , Sequências Reguladoras de Ácido Nucleico , Colo/metabolismo , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/genética , Humanos , Isoformas de Proteínas/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430192

RESUMO

Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of Xenopus tropicalis tadpoles using RNA-Seq. Among the differentially expressed genes (DE), 70.5% were regulated by TH only, 0.87% by GC only, and 15% by crosstalk between the two hormones. Gene ontology analysis of the crosstalk-regulated genes identified terms referring to DNA replication, DNA repair, and cell-cycle regulation. Biological network analysis identified groups of genes targeted by the hormonal crosstalk and corroborated the gene ontology analysis. Specifically, we found two groups of functionally linked genes (chains) mainly composed of crosstalk-regulated hubs (highly interactive genes), and a large subnetwork centred around the crosstalk-regulated genes psmb6 and cdc7. Most of the genes in the chains are involved in cell-cycle regulation, as are psmb6 and cdc7, which regulate the G2/M transition. Thus, the biological action of these two hormonal pathways acting together in the liver targets cell-cycle regulation.


Assuntos
Fígado , Hormônios Tireóideos , Animais , Larva/genética , Larva/metabolismo , Xenopus/genética , Xenopus/metabolismo , Hormônios Tireóideos/metabolismo , Fígado/metabolismo , Proliferação de Células , Corticosteroides
4.
Dev Dyn ; 250(6): 779-787, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527613

RESUMO

Amphibians display very diverse life cycles and development can be direct, where it occurs in ovo and a juvenile hatches directly, or biphasic, where an aquatic larva hatches and later undergoes metamorphosis followed by sexual maturation. In both cases, metamorphosis, corresponds to the post embryonic transition (PETr). A third strategy, only found in Urodeles, is more complex as larvae reach sexual maturity before metamorphosis, which can become accessory. The resulting paedomorphs retain their larval characters and keep their aquatic habitat. Does it mean that paedomorphs do not undergo PETr? Recent work using high throughput technologies coupled to system biology and developmental endocrinology revisited this question and provided novel datasets indicating that a paedomorph's "larval" tissue undergoes a proper developmental transition. Together with historical data, we propose that this transition is a marker of the PETr, which would be distinct from metamorphosis. This implies that (a) complex life cycles would result from the uncoupling of PETr and metamorphosis, and (b) biphasic life cycles would be a special cases where they occur simultaneously.


Assuntos
Anfíbios/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Metamorfose Biológica/fisiologia , Animais
5.
Dev Biol ; 462(2): 180-196, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240642

RESUMO

Methylation of cytosine residues in DNA influences chromatin structure and gene transcription, and its regulation is crucial for brain development. There is mounting evidence that DNA methylation can be modulated by hormone signaling. We analyzed genome-wide changes in DNA methylation and their relationship to gene regulation in the brain of Xenopus tadpoles during metamorphosis, a thyroid hormone-dependent developmental process. We studied the region of the tadpole brain containing neurosecretory neurons that control pituitary hormone secretion, a region that is highly responsive to thyroid hormone action. Using Methylated DNA Capture sequencing (MethylCap-seq) we discovered a diverse landscape of DNA methylation across the tadpole neural cell genome, and pairwise stage comparisons identified several thousand differentially methylated regions (DMRs). During the pre-to pro-metamorphic period, the number of DMRs was lowest (1,163), with demethylation predominating. From pre-metamorphosis to metamorphic climax DMRs nearly doubled (2,204), with methylation predominating. The largest changes in DNA methylation were seen from metamorphic climax to the completion of metamorphosis (2960 DMRs), with 80% of the DMRs representing demethylation. Using RNA sequencing, we found negative correlations between differentially expressed genes and DMRs localized to gene bodies and regions upstream of transcription start sites. DNA demethylation at metamorphosis revealed by MethylCap-seq was corroborated by increased immunoreactivity for the DNA demethylation intermediates 5-hydroxymethylcytosine and 5-carboxymethylcytosine, and the methylcytosine dioxygenase ten eleven translocation 3 that catalyzes DNA demethylation. Our findings show that the genome of tadpole neural cells undergoes significant changes in DNA methylation during metamorphosis, and these changes likely influence chromatin architecture, and gene regulation programs occurring during this developmental period.


Assuntos
Encéfalo/embriologia , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/genética , Animais , Encéfalo/metabolismo , Cisteína Dioxigenase/metabolismo , DNA/genética , Desmetilação , Expressão Gênica , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , RNA Mensageiro/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
6.
Gen Comp Endocrinol ; 260: 107-114, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339184

RESUMO

Previous work identified a transcribed locus, Str. 34945, induced by the frog stress hormone corticosterone (CORT) in Xenopus tropicalis tails. Because thyroid hormone had no influence on its expression, Str. 34945 was dubbed the first "CORT-only" gene known from tadpoles. Here, we examine the genomic annotation for this transcript, hormone specificity, time course of induction, tissue distribution, and developmental expression profile. The location of Str. 34945 on the X. tropicalis genome lies between the genes ush1g (Usher syndrome 1G) and fads6 (fatty acid desaturase 6). A blast search showed that it maps to the same region on the X. laevis genome, but no hits were found in the human genome. Using RNA-seq data and conventional reverse transcriptase PCR and sequencing, we show that Str. 34945 is part of the 3' untranslated region of ush1g. We find that CORT but not aldosterone or thyroid hormone treatment induces Str. 34945 in tadpole tails and that expression of Str. 34945 achieves maximal expression within 12-24 h of CORT treatment. Among tissues, Str. 34945 is induced to the highest degree in tail, with lesser induction in lungs, liver, and heart, and no induction in the brain or kidney. During natural metamorphosis, Str. 34945 expression in tails peaks at metamorphic climax. The role of ush1g in metamorphosis is not understood, but the specificity of its hormone response and its expression in tail make ush1g valuable as a marker of CORT-response gene induction independent of thyroid hormone.


Assuntos
Proteínas de Choque Térmico/genética , Metamorfose Biológica/genética , Xenopus/crescimento & desenvolvimento , Xenopus/genética , Animais , Clonagem Molecular , Corticosterona/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Choque Térmico/isolamento & purificação , Hormônios/genética , Hormônios/isolamento & purificação , Larva/genética , Larva/metabolismo , Masculino , RNA Mensageiro/genética , Hormônios Tireóideos/farmacologia , Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
8.
Biochim Biophys Acta ; 1830(7): 3882-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22565053

RESUMO

BACKGROUND: Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. However, the in vivo mechanism of TR action remains poorly explored. SCOPE OF REVIEW: Frog metamorphosis is controlled by TH and mimics the postembryonic period in mammals when high levels of TH are also required. We review here some of the findings on the developmental functions of TH and TR and the associated mechanisms obtained from this model system. MAJOR CONCLUSION: A dual function model for TR in Anuran development was proposed over a decade ago. That is, unliganded TR recruits corepressors to TH response genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes. Subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model. Specifically, it has been shown that unliganded TR recruits histone deacetylase containing corepressor complexes during larval stages to control metamorphic timing, while liganded TR recruits multiple histone modifying and chromatin remodeling coactivator complexes during metamorphosis. These complexes can alter chromatin structure via nucleosome position alterations or eviction and histone modifications to contribute to the recruitment of transcriptional machinery and gene activation. GENERAL SIGNIFICANCE: The molecular mechanisms of TR action in vivo as revealed from studies on amphibian metamorphosis are very likely applicable to mammalian development as well. These findings provide a new perspective for understanding the diverse effects of TH in normal physiology and diseases caused by TH dysfunction. This article is part of a Special Issue entitled Thyroid hormone signalling.


Assuntos
Epilepsia , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica , Transdução de Sinais , Xenopus
9.
PLoS Genet ; 7(1): e1001277, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21283790

RESUMO

Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Meningite Meningocócica/microbiologia , Neisseria meningitidis/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico/genética , Sequência de Bases , Biologia Computacional , Evolução Molecular , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Neisseria gonorrhoeae/genética , Polimorfismo de Nucleotídeo Único , Pequeno RNA não Traduzido/genética , Recombinação Genética , Transcrição Gênica
10.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38919542

RESUMO

Partial hepatectomy is a model of acute liver injury that is known to induce a strong reprogrammation of gene expression. Transcriptional induction of Immediate Early Genes is extremely fast and this would be due to the release of RNA Polymerase II poised for elongation at 'paused' genes. Using bioinformatic analysis, we identified 23 genes sharing features of paused genes before hepatectomy, and with predicted quick and strong expression induction after. This transcriptional dynamic, confirmed by RT-qPCR for Jun , Fos , Btg2, is very precocious. RNA Pol II CTD Ser2 hyperphosphorylation indicates a switch to productive elongation and release from transcriptional pause.

11.
Front Endocrinol (Lausanne) ; 15: 1360188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529399

RESUMO

Thyroid hormones are involved in many biological processes such as neurogenesis, metabolism, and development. However, compounds called endocrine disruptors can alter thyroid hormone signaling and induce unwanted effects on human and ecosystems health. Regulatory tests have been developed to detect these compounds but need to be significantly improved by proposing novel endpoints and key events. The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD test guideline no. 248) is one such test. It is based on Xenopus laevis tadpoles, a particularly sensitive model system for studying the physiology and disruption of thyroid hormone signaling: amphibian metamorphosis is a spectacular (thus easy to monitor) life cycle transition governed by thyroid hormones. With a long-term objective of providing novel molecular markers under XETA settings, we propose first to describe the differential effects of thyroid hormones on gene expression, which, surprisingly, are not known. After thyroid hormones exposure (T3 or T4), whole tadpole RNAs were subjected to transcriptomic analysis. By using standard approaches coupled to system biology, we found similar effects of the two thyroid hormones. They impact the cell cycle and promote the expression of genes involves in cell proliferation. At the level of the whole tadpole, the immune system is also a prime target of thyroid hormone action.


Assuntos
Ecossistema , Hormônios Tireóideos , Animais , Humanos , Xenopus laevis/metabolismo , Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Proliferação de Células
12.
Cells Dev ; : 203924, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692409

RESUMO

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.

13.
Nat Commun ; 15(1): 579, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233380

RESUMO

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.


Assuntos
Cromatina , Evolução Molecular , Animais , Cromatina/genética , Genoma/genética , Anuros/genética , Xenopus/genética , Centrômero/genética
14.
J Exp Zool B Mol Dev Evol ; 320(6): 375-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23677533

RESUMO

The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.


Assuntos
Matriz Óssea/fisiologia , Colágeno/fisiologia , Evolução Molecular , Xenopus/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Colágeno/genética , Dados de Sequência Molecular , Filogenia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Xenopus/genética
15.
Cancer Res Commun ; 3(6): 1041-1056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377608

RESUMO

Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Humanos , Glioblastoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Mitocôndrias , Células-Tronco Neoplásicas
16.
Front Genet ; 13: 996826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386828

RESUMO

Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.

17.
Biochim Biophys Acta ; 1799(8): 546-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20637911

RESUMO

In most of oviparous animals, vitellogenins (VTG) are the major egg yolk precursors. They are produced in the liver under the control of estrogens. In rainbow trout (Oncorhynchus mykiss), the vtg genes cluster contains an unusually large number of almost identical gene copies. In order to identify the regulatory elements in their promoters, we used a combination of reporter plasmids containing genomic sequences including putative estrogen response elements (EREs) and we performed transient transfection assays in MCF-7 and yeast cells. We found a functional ERE corresponding to the sequence GGGGCAnnnTAACCT (rtvtgERE), which differs from the consensus ERE (ERE(cs)) by three base pairs. This non-palindromic ERE is located in the env gene of a retrotransposon relic, 180 base pairs upstream of the transcriptional start site. Fluorescence anisotropy experiments confirmed that the purified human estrogen receptor alpha (hERalpha) can specifically bind to rtvtgERE. Furthermore, we observe that the stability of hERalpha-ERE(cs) and hERalpha-rtvtgERE complexes is similar with equilibrium dissociation constants of 3.0nM and 6.2nM respectively, under our experimental conditions. Additionally, this rtvtgERE sequence displays a high E2-responsiveness through ER activation in cellulo. In the rainbow trout, the functional ERE (rtvtgERE) lies within promoter sequences which are mostly composed of sequences derived from transposable elements (TEs), which therefore may have acted as an evolutionary buffer to secure the proper expression of these genes.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Oncorhynchus mykiss/genética , Regiões Promotoras Genéticas/genética , Vitelogeninas/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Vitelogeninas/metabolismo
18.
Cells ; 10(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572025

RESUMO

BACKGROUND: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. METHODS: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were modeled by system biology. RESULTS: We found that gene expression is mostly regulated by either T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are dominated by cross-talks. CONCLUSION: Cross-talks between thyroid hormones and glucocorticoids are more complex than initially envisioned and are not limited to the simple addition of their individual effects, a statement that can be summarized with the pseudo-equation: TH ∙ GC > TH + GC. DNA methylation changes are highly dynamic and buffered from genome expression.


Assuntos
Glucocorticoides/metabolismo , Metamorfose Biológica/fisiologia , Transdução de Sinais/fisiologia , Hormônios Tireóideos/metabolismo , Transcriptoma/genética , Xenopus/genética , Xenopus/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética
19.
J Mol Biol ; 433(7): 166805, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450253

RESUMO

PiggyBac(PB)-like elements (pble) are members of a eukaryotic DNA transposon family. This family is of interest to evolutionary genomics because pble transposases have been domesticated at least 9 times in vertebrates. The amino acid sequence of pble transposases can be split into three regions: an acidic N-terminal domain (~100 aa), a central domain (~400 aa) containing a DD[D/E] catalytic triad, and a cysteine-rich domain (CRD; ~90 aa). Two recent reports suggested that a functional CRD is required for pble transposase activity. Here we found that two CRD-deficient pble transposases, a PB variant and an isoform encoded by the domesticated PB-derived vertebrate transposase gene 5 (pgbd5) trigger transposition of the Ifp2 pble. When overexpressed in HeLa cells, these CRD-deficient transposases can insert Ifp2 elements with proper and improper transposon ends, associated with deleterious effects on cells. Finally, we found that mouse CRD-deficient transposase Pgbd5, as well as PB, do not insert pbles at random into chromosomes. Transposition events occurred more often in genic regions, in the neighbourhood of the transcription start sites and were often found in genes predominantly expressed in the human central nervous system.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas do Tecido Nervoso/genética , Domínios Proteicos/genética , Transposases/genética , Animais , Cromossomos/genética , Células HeLa , Humanos , Camundongos , Recombinação Genética
20.
BMC Mol Cell Biol ; 22(1): 43, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461828

RESUMO

BACKGROUND: The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS: Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION: We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.


Assuntos
RNA Longo não Codificante/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Ciclina T/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA