Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 62: 102777, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111377

RESUMO

Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As4S4/Fe3O4 (4:1) and As4S4/Fe3O4 (1:1) demonstrated effective anti-MM activity in in vitro, ex vivo, and in vivo in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G2/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As4S4/Fe3O4 (4:1) observed synergism with dexamethasone and melphalan, while As4S4/Fe3O4 (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.

2.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924877

RESUMO

This study shows mechanochemical synthesis as an alternative method to the traditional green synthesis of silver nanoparticles in a comparative manner by comparing the products obtained using both methodologies and different characterization methods. As a silver precursor, the most commonly used silver nitrate was applied and the easily accessible lavender (Lavandula angustofolia L.) plant was used as a reducing agent. Both syntheses were performed using 7 different lavender:AgNO3 mass ratios. The synthesis time was limited to 8 and 15 min in the case of green and mechanochemical synthesis, respectively, although a significant amount of unreacted silver nitrate was detected in both crude reaction mixtures at low lavender:AgNO3 ratios. This finding is of particular interest mainly for green synthesis, as the potential presence of silver nitrate in the produced nanosuspension is often overlooked. Unreacted AgNO3 has been removed from the mechanochemically synthesized samples by washing. The nanocrystalline character of the products has been confirmed by both X-ray diffraction (Rietveld refinement) and transmission electron microscopy. The latter has shown bimodal size distribution with larger particles in tens of nanometers and the smaller ones below 10 nm in size. In the case of green synthesis, the used lavender:AgNO3 ratio was found to have a decisive role on the crystallite size. Silver chloride has been detected as a side-product, mainly at high lavender:AgNO3 ratios. Both products have shown a strong antibacterial activity, being higher in the case of green synthesis, but this can be ascribed to the presence of unreacted AgNO3. Thus, one-step mechanochemical synthesis (without the need to prepare extract and performing the synthesis as separate steps) can be applied as a sustainable alternative to the traditional green synthesis of Ag nanoparticles using plants.

3.
Nanomaterials (Basel) ; 10(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113789

RESUMO

A combination of solid-state mechanochemical and green approaches for the synthesis of silver nanoparticles (AgNPs) is explored in this study. Thymus serpyllum L. (SER), Sambucus nigra L. (SAM) and Thymus vulgaris L. (TYM) plants were successfully applied to reduce AgNO3 to AgNPs, as confirmed by X-ray diffraction analysis, with SER being the best reducing agent, and TYM being the worst. The experiments were performed via a one-step planetary milling process, where various AgNO3:plant mass ratios (1:1, 1:10, 1:50 and 1:100) were investigated. Atomic absorption spectrometry indicated that the stability of the mechanochemically produced AgNPs increased markedly when a sufficiently large quantity of the reducing plant was used. Furthermore, when larger quantities of plant material were employed, the crystallite size of the AgNPs decreased. TEM analysis revealed that all AgNPs produced from both AgNO3:plant ratios 1:1 and 1:10 exhibit the bimodal size distribution with the larger fraction with size in tens of nm and the smaller one below 10 nm in size. The antibacterial activity of the produced AgNPs was observed only for AgNO3:plant ratio 1:1, with the AgNPs prepared using SER showing the greatest antibacterial properties.

4.
Nanomaterials (Basel) ; 11(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396849

RESUMO

The CuInSe2/ZnS multiparticulate nanocomposites were first synthesized employing two-step mechanochemical synthesis. In the first step, tetragonal CuInSe2 crystals prepared from copper, indium and selenium precursors were co-milled with zinc acetate dihydrate and sodium sulfide nonahydrate as precursors for ZnS in different molar ratios by mechanochemical route in a planetary mill. In the second step, the prepared CuInSe2/ZnS nanocrystals were further milled in a circulation mill in sodium dodecyl sulphate (SDS) solution (0.5 wt.%) to stabilize the synthesized nanoparticles. The sodium dodecyl sulphate capped CuInSe2/ZnS 5:0-SDS nanosuspension was shown to be stable for 20 weeks, whereas the CuInSe2/ZnS 4:1-SDS one was stable for about 11 weeks. After sodium dodecyl sulphate capping, unimodal particle size distribution was obtained with particle size medians approaching, respectively, 123 nm and 188 nm for CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanocomposites. Successful stabilization of the prepared nanosuspensions due to sodium dodecyl sulphate covering the surface of the nanocomposite particles was confirmed by zeta potential measurements. The prepared CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanosuspensions possessed anti-myeloma sensitizing potential assessed by significantly reduced viability of multiple myeloma cell lines, with efficient fluorescence inside viable cells and higher cytotoxic efficacy in CuInSe2/ZnS 4:1-SDS nanosuspension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA