Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 28(9): 1447-1457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703405

RESUMO

AIMS: Many patients with glioblastoma (GBM) suffer from comorbid neurological/psychiatric disorders and, therefore, are treated with psychopharmacological agents. Diazepam (DIA) is widely adopted to treat status epilepticus, alleviate anxiety, and inhibit chemotherapy-associated delayed emesis in GBM patients. Even though temozolomide (TMZ) and DIA could be found as possible combination therapy in clinical practice, there are no reports of their combined effects in GBM. Hence, it may be of interest to investigate whether DIA enhances the antitumor efficacy of TMZ in GBM cells. METHODS: U87 human GBM was used to examine the effects of combined TMZ and DIA on cell viability, and the oxygen consumption within the cells, in order to evaluate mitochondrial bioenergetic response upon the treatment. RESULTS: The cooperative index showed the presence of antagonism between TMZ and DIA, which was confirmed on long-term observation. Moreover, the level of apoptosis after the TMZ treatment was significantly decreased when administered with DIA (p < 0.001). Concomitant use of TMZ and DIA increased the basal cell respiration rate, the oxidative phosphorylation rate, and maximal capacity of mitochondrial electron transport chain, as well as the activities of complexes I and II, vs. TMZ alone (p < 0.001). CONCLUSION: Comparing our results with data reported that DIA elicits cell cycle arrest in the G0/G1 phase and favors senescence reveals that DIA diminishes TMZ efficacy in concomitant use in the treatment of GBM. However, due to its great potency to hinder GBM proliferation and metabolism, it could be considered using DIA as maintenance therapy after TMZ cycles.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Diazepam/farmacologia , Diazepam/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Microsc Res Tech ; 85(4): 1557-1567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34888993

RESUMO

In the present work, a biomaterial (SBA-16/HA) based on the growth of hydroxyapatite (HA) particles within an organized silica structure SBA-16 (Santa Barbara Amorphous-16) was developed to evaluate its application to act as a porous microenvironment promoting attachment and viability of human dental pulp stem cells of healthy deciduous teeth (SHED). First, SHED were isolated and their phenotypes were evaluated by flow cytometry. The samples of SBA-16/HA were characterized by X-ray diffraction (XRD), small and wide angle X-ray scattering (SWAXS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive spectra detector (EDS). Afterward, cells were cultured in the eluates of the above-mentioned biomaterial aged for 24 hr, 7. and 14 days. Bio-Oss® and dentin particles are involved for comparison and cells are cultured in the eluates of these two materials also. Thiazolyl Blue Tetrazolium bromide assay-MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay) was used for the determination of cell viability. The results obtained by all aforementioned characterization methods of SBA-16/HA, revealed a uniform spherical mesoporous structure, an intrinsic characteristic of this material. This material displayed excellent biocompatibility on SHEDs, and even proliferative potential, indicating that SBA-16/HA could potentially serve as a suitable substrate for bone regeneration. Contrary to SBA-16/HA, dentin particles showed low cytotoxicity at all time points, compared to control and Bio-Oss®groups. Our results substantiate the idea that SBA-16/HA has a beneficial effect on SHEDs, thus paving the way toward developing new material for bone replacement.


Assuntos
Durapatita , Nanocompostos , Idoso , Polpa Dentária , Dentina/química , Durapatita/química , Humanos , Dióxido de Silício/análise , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Células-Tronco , Difração de Raios X
3.
Tissue Cell ; 72: 101557, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34051646

RESUMO

Glioblastoma (GBM) is one of the deadliest primary brain neoplasm, heavily infiltrated with tumor-associated microglia/macrophages (TAM), which has received a great deal of interest. Bearing in mind that the number of peripheral macrophages by the 14th day is negligible, in our study TAM were referred to as microglia. Here we evaluated histopathological characterization of TAM and kinetics of their infiltration in U87 orthotopic GBM, a commonly used model in preclinical research. To mimic different stages of GBM growth, we evaluated three-time points. Our data showed that the highest areal density of TAM was 7 days after GBM inoculation, with ability to proliferate early after initiation of GBM growth. The areal density of TAM within the tumor correlated with GBM growth and proliferation. Moreover, microglia underwent substantial morphological changes upon exposure to GBM cells. A transition from ramified morphology in peritumoral area to ameboid shape with larger soma and shortened, thick branches in the tumor core was observed. Higher areal fraction of blood vessels also correlated with the areal density of TAM. Given these pro-invasive features of microglia, this GBM model represents a good basis for further testing microglia as a target and new strategy to fight with.


Assuntos
Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Microglia/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA