Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nano Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953486

RESUMO

The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.

2.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175406

RESUMO

Sensitive systems with controlled release of drugs or diagnostic markers are attractive for solving the problems of biomedicine and antitumor therapy. In this study, new decasubstituted pillar[5]arene derivatives containing L-Tryptophan and L-Phenylalanine residues have been synthesized as pH-responsive drug nanocarriers. Fluorescein dye (Fluo) was loaded into the pillar[5]arene associates and used as a spectroscopic probe to evaluate the release in buffered solutions with pH 4.5, 7.4, and 9.2. The nature of the substituents in the pillar[5]arene structure has a huge influence on the rate of delivering. When the dye was loaded into the associates based on pillar[5]arene derivatives containing L-Tryptophan, the Fluo release occurs in the neutral (pH = 7.4) and alkaline (pH = 9.2) buffered solutions. When the dye was loaded into the associates based on pillar[5]arene with L-Phenylalanine fragments, the absence of release was observed in every pH evaluated. This happens as the result of different packing of the dye in the structure of the associate. This fact was confirmed by different fluorescence mechanisms (aggregation-caused quenching and aggregation-induced emission) and association constants. It was shown that the macrocycle with L-Phenylalanine fragments binds the dye more efficiently (lgKa = 3.92). The experimental results indicate that the pillar[5]arene derivatives with amino acids fragments have a high potential to be used as a pH-responsive drug delivery devices, especially for promoting the intracellular delivering, due to its nanometric size.


Assuntos
Nanopartículas , Triptofano , Fluoresceína , Fenilalanina , Nanopartículas/química
3.
J Biol Chem ; 290(7): 4178-91, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25505247

RESUMO

The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5(SOCS2)), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5(SOCS2) can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5(SOCS2) complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5(SOCS2) was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5(SOCS2) complexes is supported by traveling wave ion mobility mass spectrometry data.


Assuntos
Proteínas Culina/metabolismo , Conformação Proteica , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Elonguina , Humanos , Células K562 , Espectrometria de Massas , Modelos Moleculares , Proteína NEDD8 , Ligação Proteica , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/genética
4.
Biochem J ; 467(3): 365-86, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25886174

RESUMO

In the last decade, the ubiquitin-proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin-RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.


Assuntos
Proteínas Culina/antagonistas & inibidores , Proteínas Culina/química , Descoberta de Drogas/métodos , Proteínas Culina/genética , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas
5.
Front Immunol ; 15: 1301378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495874

RESUMO

Asymmetric cell division is a fundamental process conserved throughout evolution, employed by both prokaryotic and eukaryotic organisms. Its significance lies in its ability to govern cell fate and facilitate the generation of diverse cell types. Therefore, attaining a detailed mechanistic understanding of asymmetric cell division becomes essential for unraveling the complexities of cell fate determination in both healthy and pathological conditions. However, the role of asymmetric division in T-cell biology has only recently been unveiled. Here, we provide an overview of the T-cell asymmetric division field with the particular emphasis on experimental methods and models with the aim to guide the researchers in the selection of appropriate in vitro/in vivo models to study asymmetric division in T cells. We present a comprehensive investigation into the mechanisms governing the asymmetric division in various T-cell subsets underscoring the importance of the asymmetry in fate-determining factor segregation and transcriptional and epigenetic regulation. Furthermore, the intricate interplay of T-cell receptor signaling and the asymmetric division geometry are explored, shedding light on the spatial organization and the impact on cellular fate.


Assuntos
Divisão Celular Assimétrica , Epigênese Genética , Diferenciação Celular , Subpopulações de Linfócitos T , Imunoterapia
6.
J Biomed Res ; 38(3): 222-232, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738269

RESUMO

The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.

7.
J Mater Chem B ; 12(12): 3103-3114, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450640

RESUMO

The growing resistance of pathogens, bacteria, viruses, and fungi to a number of drugs has encouraged researchers to use natural and synthetic biomimetic systems to overcome this challenge. Multicomponent systems are an attractive approach for drug design and multitarget therapy. In this study, we report the assembly of a three-component (pillar[5]arene, bovine serum albumin, and methyl orange) biosupramolecular system as a potential drug delivery system. We estimated the cytotoxic activity and transfection ability of pillar[5]arene derivatives and investigated the effect of the nature of macrocycle functions (L-phenylalanine, glycine, L-alanine) on the native conformation of serum albumin in a three-component system. NMR, UV-vis, fluorescence, CD spectroscopy, DLS, and molecular docking studies were performed in order to confirm the structure and possible pillar[5]arene/bovine serum albumin/methyl orange interactions occurring during the association process. Results indicate that pillar[5]arene with L-phenylalanine fragments retains the native form of BSA to the maximum extent and forms more stable associates.


Assuntos
Compostos Azo , Soroalbumina Bovina , Água , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Água/química , Espectroscopia de Ressonância Magnética , Fenilalanina
8.
J Biomed Res ; : 1-16, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38828853

RESUMO

Systemic lupus erythematosus (SLE) is characterized by a systemic dysfunction of the innate and adaptive immune systems, leading to an attack on healthy tissues of the body. During the development of SLE, pathogenic features, such as the formation of autoantibodies to self-nuclear antigens, caused tissue damage including necrosis and fibrosis, with an increased expression of type Ⅰ interferon (IFN) regulated genes. Treatment of lupus with immunosuppressants and glucocorticoids, which are used as the standard therapy, is not effective enough and causes side effects. As an alternative, more effective immunotherapies have been developed, including monoclonal and bispecific antibodies that target B cells, T cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Encouraging results have been observed in clinical trials with some of these therapies. Furthermore, a chimeric antigen receptor T cells (CAR-T) therapy has emerged as the most effective, safe, and promising treatment option for SLE, as demonstrated by successful pilot studies. Additionally, emerging evidence suggests that gut microbiota dysbiosis may play a significant role in the severity of SLE, and the use of methods to normalize the gut microbiota, particularly fecal microbiota transplantation (FMT), opens up new opportunities for effective treatment of SLE.

9.
Antibodies (Basel) ; 13(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390871

RESUMO

Systemic autoimmune diseases (SAIDs), such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA), are fully related to the unregulated innate and adaptive immune systems involved in their pathogenesis. They have similar pathogenic characteristics, including the interferon signature, loss of tolerance to self-nuclear antigens, and enhanced tissue damage like necrosis and fibrosis. Glucocorticoids and immunosuppressants, which have limited specificity and are prone to tolerance, are used as the first-line therapy. A plethora of novel immunotherapies have been developed, including monoclonal and bispecific antibodies, and other biological agents to target cellular and soluble factors involved in disease pathogenesis, such as B cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Many of these have shown encouraging results in clinical trials. CAR-T cell therapy is considered the most promising technique for curing autoimmune diseases, with recent successes in the treatment of SLE and SSc. Here, we overview novel therapeutic approaches based on CAR-T cells and antibodies for targeting systemic autoimmune diseases.

10.
Transl Oncol ; 44: 101930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520912

RESUMO

Tumor employs non-cancerous cells to gain beneficial features that promote growth and survival of cancer cells. Despite intensive research in the area of tumor microenvironment, there is still a lack of reliable and reproducible in vitro model for tumor and tumor-microenvironment cell interaction studies. Herein we report the successful development of a heterogeneous cancer-stroma sphere (CSS) model composed of prostate adenocarcinoma PC3 cells and immortalized mesenchymal stem cells (MSC). The CSS model demonstrated a structured spatial layout of the cells, with stromal cells concentrated at the center of the spheres and tumor cells located on the periphery. Significant increase in the levels of VEGFA, IL-10, and IL1a has been detected in the conditioned media of CSS as compared to PC3 spheres. Single cell RNA sequencing data revealed that VEGFA was secreted by MSC cells within heterogeneous spheroids. Enhanced expression of extracellular membrane (ECM) proteins was also shown for CSS-derived MSCs. Furthermore, we demonstrated that the multicellular architecture altered cancer cell response to chemotherapeutic agents: the inhibition of sphere formation by topotecan was 74.92 ± 4.56 % for PC3 spheres and 45.95 ± 7.84 % for CSS spheres (p < 0.01), docetaxel showed 37,51± 20,88 % and 15,67± 14,08 % inhibition, respectively (p < 0.05). Thus, CSS present an effective in vitro model for examining the extracellular matrix composition and cell-to-cell interactions within the tumor, as well as for evaluating the antitumor activity of drugs.

11.
Biomedicines ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672273

RESUMO

Cell therapy is at the forefront of biomedicine in oncology and regenerative medicine. However, there are still significant challenges to their wider clinical application such as limited efficacy, side effects, and logistical difficulties. One of the potential approaches that could overcome these problems is based on extracellular vesicles (EVs) as a cell-free therapy modality. One of the major obstacles in the translation of EVs into practice is their low yield of production, which is insufficient to achieve therapeutic amounts. Here, we evaluated two primary approaches of artificial vesicle induction in primary T cells and the SupT1 cell line-cytochalasin B as a chemical inducer and ultrasonication as a physical inducer. We found that both methods are capable of producing artificial vesicles, but cytochalasin B induction leads to vesicle yield compared to natural secretion, while ultrasonication leads to a three-fold increase in particle yield. Cytochalasin B induces the formation of vesicles full of cytoplasmic compartments without nuclear fraction, while ultrasonication induces the formation of particles rich in membranes and membrane-related components such as CD3 or HLAII proteins. The most effective approach for T-cell induction in terms of the number of vesicles seems to be the combination of anti-CD3/CD28 antibody activation with ultrasonication, which leads to a seven-fold yield increase in particles with a high content of functionally important proteins (CD3, granzyme B, and HLA II).

12.
Biomedicines ; 11(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831162

RESUMO

In recent years, adoptive cell therapy has gained a new perspective of application due to the development of technologies and the successful clinical use of CAR-T cells for the treatment of patients with malignant B-cell neoplasms. However, the efficacy of CAR-T therapy against solid tumor remains a major scientific and clinical challenge. In this work, we evaluated the cytotoxicity of 2nd generation CAR-T cells against modified solid tumors cell lines-lung adenocarcinoma cell line H522, prostate carcinoma PC-3M, breast carcinoma MDA-MB-231, and epidermoid carcinoma A431 cell lines transduced with lentiviruses encoding red fluorescent protein Katushka2S and the CD19 antigen. A correlation was demonstrated between an increase in the secretion of proinflammatory cytokines and a decrease in the confluence of tumor cells' monolayer. The proposed approach can potentially be applied to preliminarily assess CAR-T cell efficacy for the treatment of solid tumors and estimate the risks of developing cytokine release syndrome.

13.
Pharmaceuticals (Basel) ; 16(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37242482

RESUMO

The present work focuses on the study of the aggregation and complexing properties of calixarenes as potential DNA condensation agents for gene delivery. In the current study, 1,4-triazole derivatives of calix[4]arenes 7 and 8 containing monoammonium fragments were synthesized. The synthesized compound's structure was characterized by using various spectroscopic techniques (FTIR, HRESI MS, ¹H NMR and ¹³C NMR). The interactions between a series of calix[4]arene-containing aminotriazole groups (triazole-containing macrocycles with diethylenetriammonium fragments (3 and 4) and triazole-containing macrocycles with monoammonium fragments (7 and 8)) and calf thymus DNA were carried out via UV absorption, fluorescence spectroscopy, dynamic light scattering and zeta potential measurements. The role of the binding forces of calixarene-DNA complexes was analyzed. Photophysical and morphological studies revealed the interaction of the calixarenes 3, 4 and 8 with ct-DNA, which transformed the fibrous structure of ct-DNA to completely condensed compact structures that are 50 nm in diameter. The cytotoxic properties of calixarenes 3, 4, 7 and 8 against cancerous cells (MCF7, PC-3) as well as a healthy cell line (HSF) were investigated. Compound 4 was found to have the highest toxic effect on MCF7 breast adenocarcinoma (IC50 3.3 µM).

14.
J Pers Med ; 13(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003936

RESUMO

Mesenchymal stem cells (MSCs) are pivotal players in tissue repair and hold great promise as cell therapeutic agents for regenerative medicine. Additionally, they play a significant role in the development of various human diseases. Studies on MSC biology have encountered a limiting property of these cells, which includes a low number of passages and a decrease in differentiation potential during in vitro culture. Although common methods of immortalization through gene manipulations of cells are well established, the resulting MSCs vary in differentiation potential compared to primary cells and eventually undergo senescence. This study aimed to immortalize primary adipose-derived MSCs by overexpressing human telomerase reverse transcriptase (hTERT) gene combined with a knockdown of TP53. The research demonstrated that immortalized MSCs maintained a stable level of differentiation into osteogenic and chondrogenic lineages during 30 passages, while also exhibiting an increase in cell proliferation rate and differentiation potential towards the adipogenic lineage. Long-term culture of immortalized cells did not alter cell morphology and self-renewal potential. Consequently, a genetically stable line of immortalized adipose-derived MSCs (iMSCs) was established.

15.
Mol Biol Res Commun ; 12(4): 139-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886737

RESUMO

The most often diagnosed and fatal malignancy in women is breast cancer. The International Agency for Research on Cancer (IARC) estimates that there are 2.26 million new cases of cancer in 2020. Adoptive cell therapy using T cells with chimeric antigen receptor shows potential for the treatment of solid tumors, such as breast cancer. In this work the effectiveness of CAR-T cells against monolayer and three-dimensional bioprinted tumor-like structures made of modified MCF-7 breast cancer cells was assessed. The cytokine profile of supernatants after co-cultivation of MCF-7 tumor cell models with CAR-T cells was also measured to reveal the inflammatory background associated with this interaction.

16.
Front Immunol ; 13: 971045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268015

RESUMO

FOXP1 is ubiquitously expressed in the human body and is implicated in both physiological and pathological processes including cancer. However, despite its importance the role of FOXP1 in T-cells has not been extensively studied. Although relatively few phenotypic and mechanistic details are available, FOXP1 role in T-cell quiescence and differentiation of CD4+ subsets has recently been established. FOXP1 prevents spontaneous T-cell activation, preserves memory potential, and regulates the development of follicular helper and regulatory T-cells. Moreover, there is growing evidence that FOXP1 also regulates T-cell exhaustion. Altogether this makes FOXP1 a crucial and highly undervalued regulator of T-cell homeostasis. In this review, we discuss the biology of FOXP1 with a focus on discoveries made in T-cells in recent years.


Assuntos
Fatores de Transcrição Forkhead , Proteínas Repressoras , Humanos , Fatores de Transcrição Forkhead/genética , Diferenciação Celular , Ativação Linfocitária , Linfócitos T Reguladores
17.
Life (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36675980

RESUMO

The p53 protein is a transcription factor that preserves the integrity of the genome. The TP53 gene has inactivating mutations in about 50% of all human cancers. Some missense mutations lead to decreased thermal stability in the p53 protein, its unfolding and aggregation under physiological conditions. A general understanding of the impact of point mutations on the stability and conformation of mutant p53 is essential for the design and development of small molecules that target specific p53 mutations. In this work, we determined the thermostability properties of some of the most common mutant forms of the p53 protein-p53(R273H), p53(R248Q), p53(R248W) and p53(Y220C)-that are often considered as attractive therapeutic targets. The results showed that these missense mutations lead to destabilization of the p53 protein and a decrease in its melting temperature.

18.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428632

RESUMO

Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular proteins involved in the suppression of anti-tumor immune responses and its overexpression is associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach, though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the therapeutic potential of targeting USP7 functions.

19.
Bioengineering (Basel) ; 9(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551014

RESUMO

Harnessing the human immune system as a foundation for therapeutic technologies capable of recognizing and killing tumor cells has been the central objective of anti-cancer immunotherapy. In recent years, there has been an increasing interest in improving the effectiveness and accessibility of this technology to make it widely applicable for adoptive cell therapies (ACTs) such as chimeric antigen receptor T (CAR-T) cells, tumor infiltrating lymphocytes (TILs), dendritic cells (DCs), natural killer (NK) cells, and many other. Automated, scalable, cost-effective, and GMP-compliant bioreactors for production of ACTs are urgently needed. The primary efforts in the field of GMP bioreactors development are focused on closed and fully automated point-of-care (POC) systems. However, their clinical and industrial application has not yet reached full potential, as there are numerous obstacles associated with delicate balancing of the complex and often unpredictable cell biology with the need for precision and full process control. Here we provide a brief overview of the existing and most advanced systems for ACT manufacturing, including cell culture bags, G-Rex flasks, and bioreactors (rocking motion, stirred-flask, stirred-tank, hollow-fiber), as well as semi- and fully-automated closed bioreactor systems.

20.
Cancers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205827

RESUMO

Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA