Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(3): H305-H317, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607800

RESUMO

Fatty acids (FAs) rapidly and efficiently reduce cardiac glucose uptake in the Randle cycle or glucose-FA cycle. This fine-tuned physiological regulation is critical to allow optimal substrate allocation during fasted and fed states. However, the mechanisms involved in the direct FA-mediated control of glucose transport have not been totally elucidated yet. We previously reported that leucine and ketone bodies, other cardiac substrates, impair glucose uptake by increasing global protein acetylation from acetyl-CoA. As FAs generate acetyl-CoA as well, we postulated that protein acetylation is enhanced by FAs and participates in their inhibitory action on cardiac glucose uptake. Here, we demonstrated that both palmitate and oleate promoted a rapid increase in protein acetylation in primary cultured adult rat cardiomyocytes, which correlated with an inhibition of insulin-stimulated glucose uptake. This glucose absorption deficit was caused by an impairment in the translocation of vesicles containing the glucose transporter GLUT4 to the plasma membrane, although insulin signaling remained unaffected. Interestingly, pharmacological inhibition of lysine acetyltransferases (KATs) prevented this increase in protein acetylation and glucose uptake inhibition induced by FAs. Similarly, FA-mediated inhibition of insulin-stimulated glucose uptake could be prevented by KAT inhibitors in perfused hearts. To summarize, enhanced protein acetylation can be considered as an early event in the FA-induced inhibition of glucose transport in the heart, explaining part of the Randle cycle.NEW & NOTEWORTHY Our results show that cardiac metabolic overload by oleate or palmitate leads to increased protein acetylation inhibiting GLUT4 translocation to the plasma membrane and glucose uptake. This observation suggests an additional regulation mechanism in the physiological glucose-FA cycle originally discovered by Randle.


Assuntos
Ácidos Graxos , Ácido Oleico , Ratos , Animais , Ácidos Graxos/metabolismo , Transporte Proteico , Ácido Oleico/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Transporte Biológico , Miócitos Cardíacos/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Palmitatos/farmacologia , Transportador de Glucose Tipo 4/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 322(6): H1032-H1043, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486479

RESUMO

Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools toward the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. We next showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a nonacetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts.NEW & NOTEWORTHY Acetylation level of α-tubulin on K40 is increased in the heart of a diet-induced mouse model of type 2 diabetes. Pharmacological stimulation of α-tubulin K40 acetylation lowers insulin-mediated GLUT4 vesicles translocation to the plasma membrane, reducing glucose transport. Expressing a nonacetylable dominant form of α-tubulin boosts glucose uptake in both insulin-sensitive and insulin-resistant cardiomyocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Miócitos Cardíacos , Tubulina (Proteína) , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Lisina/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Transporte Proteico , Ratos , Tubulina (Proteína)/metabolismo
3.
Biochem J ; 478(7): 1315-1319, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33821970

RESUMO

Loss of the insulin-stimulated glucose uptake in muscle is a crucial event participating in the defect of whole-body metabolism in type 2 diabetes. Therefore, identification by Pavarotti et al. (Biochem. J (2021) 478 (2): 407-422) of complexin-2 as an important contributor to glucose transporter 4 (GLUT4) translocation to muscle cell plasma membrane upon insulin stimulation is essential. The present commentary discusses the biological importance of the findings and proposes future challenges and opportunities.


Assuntos
Diabetes Mellitus Tipo 2 , Membrana Celular/metabolismo , Glucose , Humanos , Insulina/metabolismo , Proteínas de Transporte de Monossacarídeos , Proteínas Musculares
4.
EMBO J ; 36(13): 1946-1962, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28515121

RESUMO

Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1-/- phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1-/- MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Autorrenovação Celular , Homeostase , L-Lactato Desidrogenase/metabolismo , Músculos/citologia , Células-Tronco/metabolismo , Animais , Glicólise , Camundongos , Camundongos Knockout
5.
Am J Physiol Heart Circ Physiol ; 320(2): H838-H853, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416451

RESUMO

Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.


Assuntos
Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Florizina/farmacologia , Isoformas de Proteínas , Ratos Wistar , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética
6.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502162

RESUMO

Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Choque Séptico/metabolismo , Acetilação , Animais , Hidratação/métodos , Lipopolissacarídeos/toxicidade , Ratos , Choque Séptico/etiologia , Choque Séptico/terapia
7.
FASEB J ; 33(11): 12374-12391, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404503

RESUMO

AMPK is a central regulator of energy homeostasis. AMPK not only elicits acute metabolic responses but also promotes metabolic reprogramming and adaptations in the long-term through regulation of specific transcription factors and coactivators. We performed a whole-genome transcriptome profiling in wild-type (WT) and AMPK-deficient mouse embryonic fibroblasts (MEFs) and primary hepatocytes that had been treated with 2 distinct classes of small-molecule AMPK activators. We identified unique compound-dependent gene expression signatures and several AMPK-regulated genes, including folliculin (Flcn), which encodes the tumor suppressor FLCN. Bioinformatics analysis highlighted the lysosomal pathway and the associated transcription factor EB (TFEB) as a key transcriptional mediator responsible for AMPK responses. AMPK-induced Flcn expression was abolished in MEFs lacking TFEB and transcription factor E3, 2 transcription factors with partially redundant function; additionally, the promoter activity of Flcn was profoundly reduced when its putative TFEB-binding site was mutated. The AMPK-TFEB-FLCN axis is conserved across species; swimming exercise in WT zebrafish induced Flcn expression in muscle, which was significantly reduced in AMPK-deficient zebrafish. Mechanistically, we have found that AMPK promotes dephosphorylation and nuclear localization of TFEB independently of mammalian target of rapamycin activity. Collectively, we identified the novel AMPK-TFEB-FLCN axis, which may function as a key cascade for cellular and metabolic adaptations.-Collodet, C., Foretz, M., Deak, M., Bultot, L., Metairon, S., Viollet, B., Lefebvre, G., Raymond, F., Parisi, A., Civiletto, G., Gut, P., Descombes, P., Sakamoto, K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Transporte Ativo do Núcleo Celular , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Camundongos , Fosforilação , Ribonucleotídeos/farmacologia , Peixe-Zebra
8.
Am J Physiol Heart Circ Physiol ; 313(2): H432-H445, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646031

RESUMO

High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [13C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart.NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Cetoácidos/farmacologia , Corpos Cetônicos/farmacologia , Leucina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Acetilação , Animais , Transporte Biológico , Células Cultivadas , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Preparação de Coração Isolado , Cetoácidos/metabolismo , Corpos Cetônicos/metabolismo , Leucina/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Transporte Proteico , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
9.
FASEB J ; 30(5): 1913-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839375

RESUMO

Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 µM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 µM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.


Assuntos
Astrócitos/fisiologia , Ácidos Graxos/farmacologia , Corpos Cetônicos/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina/biossíntese , Células Cultivadas , Glicólise , Humanos , Oxirredução , Consumo de Oxigênio , Células-Tronco Pluripotentes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Am J Physiol Endocrinol Metab ; 311(4): E706-E719, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577855

RESUMO

AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory ß (ß1 and ß2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 µM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Aminoimidazol Carboxamida/farmacologia , Animais , Anticorpos Bloqueadores/farmacologia , Humanos , Técnicas In Vitro , Isoenzimas , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos
11.
J Nat Prod ; 79(11): 2856-2864, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27792327

RESUMO

To identify natural bioactive compounds from complex mixtures such as plant extracts, efficient fractionation for biological screening is mandatory. In this context, a fully automated workflow based on two-dimensional liquid chromatography (2D-LC × LC) was developed, allowing for the production of hundreds of semipure fractions per extract. Moreover, the ELSD response was used for online sample weight estimation and automated concentration normalization for subsequent bioassays. To evaluate the efficiency of this protocol, an enzymatic assay was developed using AMP-activated protein kinase (AMPK). The activation of AMPK by nonactive extracts spiked with biochanin A, a known AMPK activator, was enhanced greatly when the fractionation workflow was applied compared to screening crude spiked extracts. The performance of the workflow was further evaluated on a red clover (Trifolium pratense) extract, which is a natural source of biochanin A. In this case, while the crude extract or 1D chromatography fractions failed to activate AMPK, semipure fractions containing biochanin A were readily localized when produced by the 2D-LC×LC-ELSD workflow. The automated fractionation methodology presented demonstrated high efficiency for the detection of bioactive compounds at low abundance in plant extracts for high-throughput screening. This procedure can be used routinely to populate natural product libraries for biological screening.


Assuntos
Produtos Biológicos/química , Trifolium/química , Proteínas Quinases Ativadas por AMP/metabolismo , Algoritmos , Cromatografia Líquida de Alta Pressão , Genisteína/química , Estrutura Molecular , Padrões de Referência , Suíça
12.
Am J Physiol Endocrinol Metab ; 306(6): E688-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425763

RESUMO

AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Activation of AMPK provides beneficial outcomes in fighting against metabolic disorders such as insulin resistance and type 2 diabetes. Currently, there is no allosteric AMPK activator available for the treatment of metabolic diseases, and limited compounds are available to robustly stimulate cellular/tissue AMPK in a specific manner. Here we investigated whether simultaneous administration of two different pharmacological AMPK activators, which bind and act on different sites, would result in an additive or synergistic effect on AMPK and its downstream signaling and physiological events in intact cells. We observed that cotreating primary hepatocytes with the AMP mimetic 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) and a low dose (1 µM) of the allosteric activator A769662 produced a synergistic effect on AMPK Thr172 phosphorylation and catalytic activity, which was associated with a more profound increase/decrease in phosphorylation of downstream AMPK targets and inhibition of hepatic lipogenesis compared with single-compound treatment. Mechanistically, we found that cotreatment does not stimulate LKB1, upstream kinase for AMPK, but it protects against dephosphorylation of Thr172 phosphorylation by protein phosphatase PP2Cα in an additive manner in a cell-free assay. Collectively, we demonstrate that AICAR sensitizes the effect of A769662 and promotes AMPK activity and its downstream events. The study demonstrates the feasibility of promoting AMPK activity by using two activators with distinct modes of action in order to achieve a greater activation of AMPK and downstream signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ativadores de Enzimas/farmacologia , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mioblastos/efeitos dos fármacos , Pironas/farmacologia , Ribonucleotídeos/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Regulação Alostérica/efeitos dos fármacos , Aminoimidazol Carboxamida/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Células Cultivadas , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Lipogênese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Biochem J ; 452(3): 531-43, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548149

RESUMO

PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose 2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is involved in cell proliferation owing to its role in carbohydrate metabolism. In the present study we analysed the mechanism of regulation of PFKFB3 as an immediate early gene controlled by stress stimuli that activates the p38/MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2] pathway. We report that exposure of HeLa and T98G cells to different stress stimuli (NaCl, H2O2, UV radiation and anisomycin) leads to a rapid increase (15-30 min) in PFKFB3 mRNA levels. The use of specific inhibitors in combination with MK2-deficient cells implicate control by the protein kinase MK2. Transient transfection of HeLa cells with deleted gene promoter constructs allowed us to identify an SRE (serum-response element) to which SRF (serum-response factor) binds and thus transactivates PFKFB3 gene transcription. Direct binding of phospho-SRF to the SRE sequence (-918 nt) was confirmed by ChIP (chromatin immunoprecipiation) assays. Moreover, PFKFB3 isoenzyme phosphorylation at Ser461 by MK2 increases PFK-2 activity. Taken together, the results of the present study suggest a multimodal mechanism of stress stimuli affecting PFKFB3 transcriptional regulation and kinase activation by protein phosphorylation, resulting in an increase in Fru-2,6-P2 concentration and stimulation of glycolysis in cancer cells.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Fosfofrutoquinase-2/química , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Sequência de Aminoácidos , Ativação Enzimática/fisiologia , Glicólise/genética , Células HeLa , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Neoplasias/química , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Biochem J ; 443(1): 193-203, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22233421

RESUMO

Recombinant muscle GYS1 (glycogen synthase 1) and recombinant liver GYS2 were phosphorylated by recombinant AMPK (AMP-activated protein kinase) in a time-dependent manner and to a similar stoichiometry. The phosphorylation site in GYS2 was identified as Ser7, which lies in a favourable consensus for phosphorylation by AMPK. Phosphorylation of GYS1 or GYS2 by AMPK led to enzyme inactivation by decreasing the affinity for both UDP-Glc (UDP-glucose) [assayed in the absence of Glc-6-P (glucose-6-phosphate)] and Glc-6-P (assayed at low UDP-Glc concentrations). Incubation of freshly isolated rat hepatocytes with the pharmacological AMPK activators AICA riboside (5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside) or A769662 led to persistent GYS inactivation and Ser7 phosphorylation, whereas inactivation by glucagon treatment was transient. In hepatocytes from mice harbouring a liver-specific deletion of the AMPK catalytic α1/α2 subunits, GYS2 inactivation by AICA riboside and A769662 was blunted, whereas inactivation by glucagon was unaffected. The results suggest that GYS inactivation by AMPK activators in hepatocytes is due to GYS2 Ser7 phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Quinases Ativadas por AMP/química , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Apraxia Ideomotora , Compostos de Bifenilo , Células Cultivadas , Sequência Consenso , Proteínas Quinases Dependentes de AMP Cíclico/química , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Glicogênio Sintase/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Pironas/farmacologia , Ratos , Ratos Wistar , Ribonucleotídeos/farmacologia , Tiofenos/farmacologia
15.
Antioxidants (Basel) ; 11(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453408

RESUMO

Heart failure, mostly associated with cardiac hypertrophy, is a major cause of illness and death. Oxidative stress causes accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to determine whether mitochondria-targeted therapies could improve cardiac hypertrophy induced by mitochondrial ROS. We used neonatal (NCMs) and adult (ACMs) rat cardiomyocytes hypertrophied by isoproterenol (Iso) to induce mitochondrial ROS. A decreased interaction between sirtuin 3 and superoxide dismutase 2 (SOD2) induced SOD2 acetylation on lysine 68 and inactivation, leading to mitochondrial oxidative stress and dysfunction and hypertrophy after 24 h of Iso treatment. To counteract these mechanisms, we evaluated the impact of the mitochondria-targeted antioxidant mitoquinone (MitoQ). MitoQ decreased mitochondrial ROS and hypertrophy in Iso-treated NCMs and ACMs but altered mitochondrial structure and function by decreasing mitochondrial respiration and mitophagy. The same decrease in mitophagy was found in human cardiomyocytes but not in fibroblasts, suggesting a cardiomyocyte-specific deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. We observed that targeting mitochondria by MitoQ in cardiomyocytes impaired the metabolism through defective mitophagy, leading to accumulation of deficient mitochondria.

16.
Commun Biol ; 5(1): 349, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414690

RESUMO

Protein O-GlcNAcylation is increasingly recognized as an important cellular regulatory mechanism, in multiple organs including the heart. However, the mechanisms leading to O-GlcNAcylation in mitochondria and the consequences on their function remain poorly understood. In this study, we use an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAc system without potential cytoplasmic confounding effects. We compare the O-GlcNAcylome of isolated cardiac mitochondria with that of mitochondria acutely exposed to NButGT, a specific inhibitor of glycoside hydrolase. Amongst the 409 O-GlcNAcylated mitochondrial proteins identified, 191 display increased O-GlcNAcylation in response to NButGT. This is associated with enhanced Complex I (CI) activity, increased maximal respiration in presence of pyruvate-malate, and a striking reduction of mitochondrial ROS release, which could be related to O-GlcNAcylation of specific subunits of ETC complexes (CI, CIII) and TCA cycle enzymes. In conclusion, our work underlines the existence of a dynamic mitochondrial O-GlcNAcylation system capable of rapidly modifying mitochondrial function.


Assuntos
Acetilglucosamina , Mitocôndrias Cardíacas , Coração , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Acta Physiol (Oxf) ; 231(3): e13566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022862

RESUMO

AIM: Metabolic sources switch from carbohydrates in utero, to fatty acids after birth and then a mix once adults. O-GlcNAcylation (O-GlcNAc) is a post-translational modification considered as a nutrient sensor. The purpose of this work was to assess changes in protein O-GlcNAc levels, regulatory enzymes and metabolites during the first periods of life and decipher the impact of O-GlcNAcylation on cardiac proteins. METHODS: Heart, brain and liver were harvested from rats before and after birth (D-1 and D0), in suckling animals (D12), after weaning with a standard (D28) or a low-carbohydrate diet (D28F), and adults (D84). O-GlcNAc levels and regulatory enzymes were evaluated by western blots. Mass spectrometry (MS) approaches were performed to quantify levels of metabolites regulating O-GlcNAc and identify putative cardiac O-GlcNAcylated proteins. RESULTS: Protein O-GlcNAc levels decrease drastically and progressively from D-1 to D84 (13-fold, P < .05) in the heart, whereas the changes were opposite in liver and brain. O-GlcNAc levels were unaffected by weaning diet in any tissues. Changes in expression of enzymes and levels of metabolites regulating O-GlcNAc were tissue-dependent. MS analyses identified changes in putative cardiac O-GlcNAcylated proteins, namely those involved in the stress response and energy metabolism, such as ACAT1, which is only O-GlcNAcylated at D0. CONCLUSION: Our results demonstrate that protein O-GlcNAc levels are not linked to dietary intake and regulated in a time and tissue-specific manner during postnatal development. We have identified by untargeted MS putative proteins with a particular O-GlcNAc signature across the development process suggesting specific role of these proteins.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Animais , Ingestão de Alimentos , Espectrometria de Massas , Ratos
18.
Trends Endocrinol Metab ; 29(12): 827-840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30385008

RESUMO

The discovery of liver kinase B1 (LKB1) as an upstream kinase for AMP-activated protein kinase (AMPK) led to the identification of several related kinases that also rely on LKB1 for their catalytic activity. Among these, the salt-inducible kinases (SIKs) have emerged as key regulators of metabolism. Unlike AMPK, SIKs do not respond to nucleotides, but their function is regulated by extracellular signals, such as hormones, through complex LKB1-independent mechanisms. While AMPK acts on multiple targets, including metabolic enzymes, to maintain cellular ATP levels, SIKs primarily regulate gene expression, by acting on transcriptional regulators, such as the cAMP response element-binding protein-regulated transcription coactivators and class IIa histone deacetylases. This review describes the development of research on SIKs, from their discovery to the most recent findings on metabolic regulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Gluconeogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Humanos
19.
Front Cardiovasc Med ; 5: 70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946550

RESUMO

Cellular catabolism is the cell capacity to generate energy from various substrates to sustain its function. To optimize this energy production, cells are able to switch between various metabolic pathways in accordance to substrate availability via a modulation of several regulatory enzymes. This metabolic flexibility is essential for the healthy heart, an organ requiring large quantities of ATP to sustain its contractile function. In type 2 diabetes, excess of non-glucidic nutrients such as fatty acids, branched-chain amino-acids, or ketones bodies, induces cardiac metabolic inflexibility. It is characterized by a preferential use of these alternative substrates to the detriment of glucose, this participating in cardiomyocytes dysfunction and development of diabetic cardiomyopathy. Identification of the molecular mechanisms leading to this metabolic inflexibility have been scrutinized during last decades. In 1963, Randle demonstrated that accumulation of some metabolites from fatty acid metabolism are able to allosterically inhibit regulatory steps of glucose metabolism leading to a preferential use of fatty acids by the heart. Nevertheless, this model does not fully recapitulate observations made in diabetic patients, calling for a more complex model. A new piece of the puzzle emerges from recent evidences gathered from different laboratories showing that metabolism of the non-glucidic substrates induces an increase in acetylation levels of proteins which is concomitant to the perturbation of glucose transport. The purpose of the present review is to gather, in a synthetic model, the different evidences that demonstrate the role of acetylation in the inhibition of the insulin-stimulated glucose uptake in cardiac muscle.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30271380

RESUMO

The AMP-activated protein kinase (AMPK) is an important cellular energy sensor. Its activation under energetic stress is known to activate energy-producing pathways and to inactivate energy-consuming pathways, promoting ATP preservation and cell survival. AMPK has been shown to play protective role in many pathophysiological processes including cardiovascular diseases, diabetes, and cancer. Its action is multi-faceted and comprises short-term regulation of enzymes by direct phosphorylation as well as long-term adaptation via control of transcription factors and cellular events such as autophagy. During the last decade, several studies underline the particular importance of the interaction between AMPK and the post-translational modification called O-GlcNAcylation. O-GlcNAcylation means the O-linked attachment of a single N-acetylglucosamine moiety on serine or threonine residues. O-GlcNAcylation plays a role in multiple physiological cellular processes but is also associated with the development of various diseases. The first goal of the present review is to present the tight molecular relationship between AMPK and enzymes regulating O-GlcNAcylation. We then draw the attention of the reader on the putative importance of this interaction in different pathophysiological events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA