Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667777

RESUMO

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Assuntos
Fosfatos de Cálcio , Quitosana , Técnicas de Cocultura , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efeitos dos fármacos , Quitosana/química , Fibroblastos/efeitos dos fármacos , Porosidade , Nanofibras/química , Fosfatos de Cálcio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Camundongos , Alicerces Teciduais/química , Carbonatos/química , Calcificação Fisiológica/efeitos dos fármacos
2.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481696

RESUMO

AIMS: Due to antibiotic tolerance of microbes within biofilm, non-antibiotic methods for prevention and treatment of implant-related infections are preferable. The goal of this work is to evaluate a facile loading strategy for medium-chain fatty-acid signaling molecules 2-heptycyclopropane-1-carboxylic acid (2CP), cis-2-decenoic acid (C2DA), and trans-2-decenoic acid, which all act as diffusible signaling factors (DSFs), onto titanium surfaces for comparison of their antimicrobial efficacy. METHODS AND RESULTS: Titanium coupons were drop-coated with 0.75 mg of DSF in ethanol and dried. Surface characteristics and the presence of DSF were confirmed with Fourier Transform infrared spectroscopy, x-ray photoelectron spectroscopy, and water contact angle. Antimicrobial assays analyzing biofilm and planktonic Staphylococcus aureus, Escherichia coli, or Candida albicans viability showed that planktonic growth was reduced after 24-h incubation but only sustained through 72 h for S. aureus and C. albicans. Biofilm formation on the titanium coupons was also reduced for all strains at the 24-h time point, but not through 72 h for E. coli. Although ∼60% of the loaded DSF was released within the first 2 days, enough remained on the surface after 4 days of elution to significantly inhibit E. coli and C. albicans biofilm. Cytocompatibility evaluations with a fibroblast cell line showed that none of the DSF-loaded groups decreased viability, while C2DA and 2CP increased viability by up to 50%. CONCLUSIONS: In this study, we found that DSF-loaded titanium coupons can inhibit planktonic microbes and prevent biofilm attachment, without toxicity to mammalian cells.


Assuntos
Staphylococcus aureus , Titânio , Animais , Titânio/farmacologia , Titânio/química , Escherichia coli , Biofilmes , Antibacterianos/farmacologia , Mamíferos
3.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286439

RESUMO

Major challenges facing clinicians treating burn wounds are the lack of integration of treatment to wound, inadequate mechanical properties of treatments, and high infection rates which ultimately lead to poor wound resolution. Electrospun chitosan membranes (ESCM) are gaining popularity for use in tissue engineering applications due to their drug loading ability, biocompatibility, biomimetic fibrous structure, and antimicrobial characteristics. This work aims to modify ESCMs for improved performance in burn wound applications by incorporating elastin and magnesium-phosphate particles (MgP) to improve mechanical and bioactive properties. The following ESCMs were made to evaluate the individual components' effects; (C: chitosan, CE: chitosan-elastin, CMg: chitosan-MgP, and CEMg: chitosan-elastin-MgP). Membrane properties analyzed were fiber size and structure, hydrophilic properties, elastin incorporation, MgP incorporation and in vitro release, mechanical properties, degradation profiles, and in vitro cytocompatibility with NIH3T3 fibroblasts. The addition of both elastin and MgP increased the average fiber diameter of CE (~400 nm), CMg (~360 nm), and CEMg (565 nm) compared to C (255 nm). Water contact angle analysis showed elastin incorporated membranes (CE and CEMg) had increased hydrophilicity (~50°) compared to the other groups (C and CMg, ~110°). The results from the degradation study showed mass retention of ~50% for C and CMg groups, compared to ~ 30% seen in CE and CEMg after 4 weeks in a lysozyme/PBS solution. CMg and CEMg exhibited burst-release behavior of ~6 µg/ml or 0.25 mM magnesium within 72 h. In vitro analysis with NIH3T3 fibroblasts showed CE and CEMg groups had superior cytocompatibility compared to C and CMg. This work has demonstrated the successful incorporation of elastin and MgP into ESCMs and allows for future studies on burn wound applications.


Assuntos
Anti-Infecciosos , Queimaduras , Quitosana , Nanofibras , Animais , Camundongos , Anti-Infecciosos/farmacologia , Quitosana/química , Elastina , Magnésio , Muramidase/farmacologia , Nanofibras/química , Células NIH 3T3 , Fosfatos , Cicatrização
4.
J Periodontal Res ; 56(5): 877-884, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33830521

RESUMO

BACKGROUND AND OBJECTIVE: Electrospun chitosan membranes (ESCM) modified with short-chain fatty acids have the ability to control the release of simvastatin (SMV), an anti-cholesterol drug with osteogenic potential, for guided bone regeneration (GBR) applications. This study evaluated in vivo osteogenic effects of rapid short release of SMV (4 weeks) vs long sustained release (8 weeks) from acetic anhydride (AA)-and hexanoic anhydride (HA)-modified ESCMs, respectively. METHODS: AA ESCMs loaded with 10 or 50 µg SMV and HA ESCMs loaded with 50 µg SMV were evaluated for biocompatibility and bone formation at 4 and 8 weeks, in 5 mm critical size rat calvarial defects, using histological evaluation and micro-CT analysis. RESULTS: No severe inflammatory response was noticed around the ESCMs. Less hydrophobic AA membranes showed signs of resorption by week 4 and were almost completely resorbed by week 8 whereas the more hydrophobic HA membranes resorbed slowly, remaining intact over 8 weeks. In micro-CT analysis, 10 µg SMV-loaded AA membranes did not show significant bone formation as compared to non-loaded AA membranes at either evaluation time points. 50 µg SMV-loaded AA membranes stimulated significantly more bone formation than non-loaded AA membranes by week 4 (%bone = 31.0 ± 5.9% (AA50) vs 18.5 ± 13.7% (AA0)) but showed no difference at week 8. HA membranes with 50 µg SMV showed significantly more bone formation as compared to corresponding non-loaded membranes by week 8 (%bone = 61.7 ± 8.9% (HA50) vs 33.9 ± 29.7% (HA0)), though such an effect was not significant at week 4. CONCLUSION: These results indicate that modified ESCMs may be used to control the release of SMV and promote bone healing in GBR applications.


Assuntos
Quitosana , Animais , Regeneração Óssea , Membranas Artificiais , Osteogênese , Ratos , Sinvastatina/farmacologia
5.
Mar Drugs ; 19(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809867

RESUMO

While electrospun chitosan membranes modified to retain nanofibrous morphology have shown promise for use in guided bone regeneration applications in in vitro and in vivo studies, their mechanical tear strengths are lower than commercial collagen membranes. Elastin, a natural component of the extracellular matrix, is a protein with extensive elastic property. This work examined the incorporation of elastin into electrospun chitosan membranes to improve their mechanical tear strengths and to further mimic the native extracellular composition for guided bone regeneration (GBR) applications. In this work, hydrolyzed elastin (ES12, Elastin Products Company, USA) was added to a chitosan spinning solution from 0 to 4 wt% of chitosan. The chitosan-elastin (CE) membranes were examined for fiber morphology using SEM, hydrophobicity using water contact angle measurements, the mechanical tear strength under simulated surgical tacking, and compositions using Fourier-transform infrared spectroscopy (FTIR) and post-spinning protein extraction. In vitro experiments were conducted to evaluate the degradation in a lysozyme solution based on the mass loss and growth of fibroblastic cells. Chitosan membranes with elastin showed significantly thicker fiber diameters, lower water contact angles, up to 33% faster degradation rates, and up to seven times higher mechanical strengths than the chitosan membrane. The FTIR spectra showed stronger amide peaks at 1535 cm-1 and 1655 cm-1 in membranes with higher concentrated elastin, indicating the incorporation of elastin into electrospun fibers. The bicinchoninic acid (BCA) assay demonstrated an increase in protein concentration in proportion to the amount of elastin added to the CE membranes. In addition, all the CE membranes showed in vitro biocompatibility with the fibroblasts.


Assuntos
Materiais Biocompatíveis , Quitosana/química , Elastina/química , Membranas Artificiais , Animais , Proliferação de Células , Elasticidade , Fibroblastos/fisiologia , Camundongos , Estrutura Molecular , Células NIH 3T3 , Relação Estrutura-Atividade , Propriedades de Superfície , Resistência à Tração
6.
Biochim Biophys Acta ; 1840(6): 2080-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561265

RESUMO

BACKGROUND: The objective of this study was to fabricate, characterize and evaluate in vitro, an injectable calcium sulfate bone cement beads loaded with an antibiotic nanoformulation, capable of delivering antibiotic locally for the treatment of periodontal disease. METHODS: Tetracycline nanoparticles (Tet NPs) were prepared using an ionic gelation method and characterized using DLS, SEM, and FTIR to determine size, morphology, stability and chemical interaction of the drug with the polymer. Further, calcium sulfate (CaSO4) control and CaSO4-Tet NP composite beads were prepared and characterized using SEM, FTIR and XRD. The drug release pattern, material properties and antibacterial activity were evaluated. In addition, protein adsorption, cytocompatibility and alkaline phosphatase activity of the CaSO4-Tet NP composite beads in comparison to the CaSO4 control were analyzed. RESULTS: Tet NPs showed a size range of 130±20nm and the entrapment efficiency calculated was 89%. The composite beads showed sustained drug release pattern. Further the drug release data was fitted into various kinetic models wherein the Higuchi model showed higher correlation value (R(2)=0.9279) as compared to other kinetic models. The composite beads showed antibacterial activity against Staphylococcus aureus and Escherichia coli. The presence of Tet NPs in the composite bead didn't alter its cytocompatibility. In addition, the composite beads enhanced the ALP activity of hPDL cells. CONCLUSIONS: The antibacterial and cytocompatible CaSO4-Tet NP composite beads could be beneficial in periodontal management to reduce the bacterial load at the infection site. GENERAL SIGNIFICANCE: Tet NPs would deliver antibiotic locally at the infection site and the calcium sulfate cement, would itself facilitate tissue regeneration.


Assuntos
Antibacterianos/administração & dosagem , Sulfato de Cálcio/administração & dosagem , Nanopartículas/administração & dosagem , Doenças Periodontais/tratamento farmacológico , Tetraciclina/administração & dosagem , Adsorção , Porosidade , Solubilidade , Tetraciclina/química
7.
J Craniofac Surg ; 26(4): 1408-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26080207

RESUMO

Amniotic multipotential tissue matrix (AmnioMTM) is a membrane material derived from placental tissues and rich in growth factors that have been reported to have potential in healing bone. This study hypothesized that demineralized bone matrix (DBM) supplemented with AmnioMTM would accelerate healing and bone formation as compared with DBM alone in a critical size (10 mm) rat calvarial bone defect model. Five DBM grafts and 5 DBM supplemented with AmnioMTM grafts were implanted in a 10-mm critical sized defect in 10 rats (1 implant per rat). After 4 weeks, animals were euthanized and defects evaluated by microCT and histology. There were no statistical differences in microCT data for mineral density, percent bone fill, or bone surface to volume ratios between groups, though the bone surface to volume ratio for the amnio-supplemented group suggested increased osteoid activity as compared with the DBM alone group. Histological data also indicated active osteoid activity and induced bone formation in the center of defects implanted with AmnioMTM supplemented graft as compared with DBM graft alone suggesting some potential osteoinductive potential. However, there was no significant difference at the mean percent of newly mineralized bone in the DBM group defect as compared with the AmnioMTM supplemented graft material. These data suggest that while bone formation was not increased at this early time point, the increased osteoid activity and the induction of new bone in the middle of the defect by the AmnioMTM indicates that further study is needed to assess its potential benefit to bone healing and regeneration.


Assuntos
Materiais Biocompatíveis , Matriz Óssea/transplante , Substitutos Ósseos , Anormalidades Craniofaciais/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Cicatrização , Animais , Modelos Animais de Doenças , Ratos , Ratos Wistar , Microtomografia por Raio-X
8.
J Mater Sci Mater Med ; 25(6): 1449-59, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504748

RESUMO

A biodegradable, composite bone graft, composed of chitosan microspheres embedded in calcium sulfate, was evaluated in vitro for point-of-care loading and delivery of antibiotics and growth factors to prevent infection and stimulate healing in large bone injuries. Microspheres were loaded with rhBMP-2 or vancomycin prior to mixing into calcium sulfate loaded with vancomycin. Composites were evaluated for set time, drug release kinetics, and bacteriostatic/bactericidal activity of released vancomycin, induction of ALP expression by released rhBMP-2, and interaction of drugs on cells. Results showed the composite set in under 36 min and released vancomycin levels that were bactericidal to S. aureus (>MIC 8-16 µg/mL) for 18 days. Composites exhibited a 1 day-delayed release, followed by a continuous release of rhBMP-2 over 6 weeks; ranging from 0.06 to 1.49 ng/mL, and showed a dose dependent release based on initial loading. Released rhBMP-2 levels were, however, too low to induce detectable levels of ALP in W20-17 cells, due to the affinity of rhBMP-2 for calcium-based materials. With stimulating amounts of rhBMP-2 (>50 ng/mL), the ALP response from W-20-17 cells was inhibited when exposed to high vancomycin levels (1,800-3,600 µg/mL). This dual-delivery system is an attractive alternative to single delivery or preloaded systems for bone regeneration since it can simultaneously fight infection and deliver a potent growth factor. Additionally, this composite can accommodate a wide range of therapeutics and thus be customizable for specific patient needs, however, the potential interactive effects of multiple agents must be investigated to ensure that functional activity is not altered.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Substitutos Ósseos/síntese química , Sulfato de Cálcio/química , Quitosana/química , Implantes de Medicamento/administração & dosagem , Alicerces Teciduais , Fator de Crescimento Transformador beta/administração & dosagem , Vancomicina/administração & dosagem , Implantes Absorvíveis , Antibacterianos/administração & dosagem , Antibacterianos/química , Proteína Morfogenética Óssea 2/química , Substitutos Ósseos/administração & dosagem , Difusão , Combinação de Medicamentos , Implantes de Medicamento/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/química , Teste de Materiais , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Fator de Crescimento Transformador beta/química , Vancomicina/química
9.
J Funct Biomater ; 15(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921536

RESUMO

Titanium has a long history of clinical use, but the naturally forming oxide is not ideal for bacterial resistance. Anodization processes can modify the crystallinity, surface topography, and surface chemistry of titanium oxides. Anatase, rutile, and mixed phase oxides are known to exhibit photocatalytic activity (PCA)-driven bacterial resistance under UVA irradiation. Silver additions are reported to enhance PCA and reduce bacterial attachment. This study investigated the effects of silver-doping additions to three established anodization processes. Silver doping showed no significant influence on oxide crystallinity, surface topography, or surface wettability. Oxides from a sulfuric acid anodization process exhibited significantly enhanced PCA after silver doping, but silver-doped oxides produced from phosphoric-acid-containing electrolytes did not. Staphylococcus aureus attachment was also assessed under dark and UVA-irradiated conditions on each oxide. Each oxide exhibited a photocatalytic antimicrobial effect as indicated by significantly decreased bacterial attachment under UVA irradiation compared to dark conditions. However, only the phosphorus-doped mixed anatase and rutile phase oxide exhibited an additional significant reduction in bacteria attachment under UVA irradiation as a result of silver doping. The antimicrobial success of this oxide was attributed to the combination of the mixed phase oxide and higher silver-doping uptake levels.

10.
Front Biosci (Landmark Ed) ; 29(3): 108, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38538267

RESUMO

BACKGROUND: Adherence of complex bacterial biofilm communities to burned tissue creates a challenge for treatment, with infection causing 51% of burn victim deaths. This study evaluated the release of therapeutics from wound care biomaterials and their antimicrobial activity against pathogens Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. METHODS: Electrospun chitosan membranes (ESCMs) were fabricated and acylated with chain lengths ranging from 6-10 carbons then loaded with 0.15 mg of anti-biofilm agent, cis-2-decenoic acid (C2DA), and 0.5 mg of local anesthetic, bupivacaine. RESULTS: Combinations of therapeutics released from modified ESCMs at a cumulative amount of 45-70% of bupivacaine and less than 20% of C2DA. Results from bacterial studies suggest that this combination reduced biofilm 10-fold for S. aureus, 2-fold for Acinetobacter baumannii, and 2-3-fold for Pseudomonas aeruginosa by 24 hours. Additionally, dual loaded groups reduced planktonic Staphylococcus aureus ~4-fold by 24 hours as well as Acinetobacter baumannii ~3-fold by 48 hours. CONCLUSIONS: The combination of therapeutics used has a significant role in biofilm prevention for selected strains via direct contact or diffusion in aqueous solutions.


Assuntos
Quitosana , Ácidos Graxos Monoinsaturados , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Quitosana/farmacologia , Bupivacaína/farmacologia , Biofilmes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
11.
J Biomed Mater Res B Appl Biomater ; 111(5): 1100-1111, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36585829

RESUMO

Titanium anodization has been shown to produce crystalline oxides exhibiting photocatalytic reactions that form reactive oxygen species (ROS) when exposed to UV light. The ROS subsequently attack bacteria cells, and thus reduce bacteria attachment on titanium implant surfaces. Polyaniline (PANI) is a conductive polymer that has shown antibacterial properties when electropolymerized onto titanium. Our research group hypothesized the addition of PANI to crystalline titanium oxide surfaces would increase the available free electrons and thus increase photocatalytic activity (PCA). This research led to the development of a novel single-step anodization approach for PANI doping crystalline titanium oxide layers. The objective of the present study was to determine the proper aniline electrolyte concentration needed to maximize the PCA and reduce bacterial attachment on the formed oxides. Aniline concentrations up to 1 M were added into a 1 M sulfuric acid electrolyte. The formed oxides exhibited increased PANI surface coverage but decreased anatase and rutile crystalline titanium oxide phase formation with increasing aniline electrolyte concentrations. Despite exhibiting the lowest levels of anatase and rutile formation, the 0.75 M and 1 M aniline oxides with the greatest PANI surface coverage also exhibited the highest PCA levels. 1 M aniline oxides showed significantly higher PCA under UVA irradiation compared to oxides formed from aniline concentrations up to 0.5 M (p < 0.001). 0.75 M aniline oxides exhibited significant reductions in Staphylococcus aureus attachment with or without UVA irradiation compared to control oxides without PANI. MTT and live/dead assays confirmed cytocompatibility and nearly 100% cell viability for the PANI doped oxides.


Assuntos
Óxidos , Titânio , Titânio/farmacologia , Titânio/química , Espécies Reativas de Oxigênio , Óxidos/química , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Antibacterianos/farmacologia
12.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896236

RESUMO

Wound dressings serve to protect tissue from contamination, alleviate pain, and facilitate wound healing. The biopolymer chitosan is an exemplary choice in wound dressing material as it is biocompatible and has intrinsic antibacterial properties. Infection can be further prevented by loading dressings with cis-2-decenoic acid (C2DA), a non-antibiotic antimicrobial agent, as well as bupivacaine (BUP), a local anesthetic that also has antibacterial capabilities. This study utilized a series of assays to elucidate the responses of dermal cells to decanoic anhydride-modified electrospun chitosan membranes (DA-ESCMs) loaded with C2DA and/or BUP. Cytocompatibility studies determined the toxic loading ranges for C2DA, BUP, and combinations, revealing that higher concentrations (0.3 mg of C2DA and 1.0 mg of BUP) significantly decreased the viability of fibroblasts and keratinocytes. These high concentrations also inhibited collagen production by fibroblasts, with lower loading concentrations promoting collagen deposition. These findings provide insight into preliminary cellular responses to DA-ESCMs and can guide future research on their clinical application as wound dressings.

13.
J Mater Sci Mater Med ; 23(8): 1971-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22588505

RESUMO

A clinical need continues for consistent bone remodeling within problematic sites such as those of fracture nonunion, avascular necrosis, or irregular bone formations. In attempt to address such needs, a biomaterial system is proposed to induce early inflammatory responses after implantation and to provide later osteoconductive scaffolding for bone regeneration. Biomaterial-induced inflammation would parallel the early stage of hematoma-induced fracture repair and allow scaffold-promoted remodeling of osseous tissue to a healthy state. Initiation of the wound healing cascade by two human concentrated platelet releasate-containing alginate/ß-tricalcium phosphate biocomposites has been studied in vitro using the TIB-71™ RAW264.7 mouse monocyte cell line. Inflammatory responses inherent to the base material were found and could be modulated through incorporation of platelet releasate. Differences in hydrogel wt% (2 vs. 8 %) and/or calcium phosphate granule vol.% (20 vs. 10 %) allowed for tuning the response associated with platelet releasate-associated growth factor elution. Tunability from completely suppressing the inflammatory response to augmenting the response was observed through varied elution profiles of both releasate-derived bioagents and impurities inherent to alginate. A 2.5-fold upregulation of inducible-nitric oxide synthase gene expression followed by a tenfold increase in nitrite media levels was induced by inclusion of releasate within the 8 wt%/10 vol.% formulation and was comparable to an endotoxin positive control. Whereas, near complete elimination of inflammation was seen when releasate was included within the 2 wt%/20 vol.% formulation. These in vitro results suggested tunable interactions between the multiple platelet releasate-derived bioagents and the biocomposites for enhancing hematoma-like fracture repair. Additionally, minimally invasive delivery for in situ curing of the implant system via injection was demonstrated in rat tail vertebrae using microcomputed tomography.


Assuntos
Substitutos Ósseos/uso terapêutico , Fosfatos de Cálcio/química , Preparações de Ação Retardada/administração & dosagem , Fraturas Ósseas/imunologia , Hematoma/imunologia , Monócitos/imunologia , Transfusão de Plaquetas/métodos , Alginatos/química , Animais , Substitutos Ósseos/administração & dosagem , Linhagem Celular , Preparações de Ação Retardada/química , Fraturas Ósseas/terapia , Ácido Glucurônico/química , Hematoma/terapia , Ácidos Hexurônicos/química , Humanos , Injeções , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Ratos
14.
J Bone Jt Infect ; 7(3): 117-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620590

RESUMO

Introduction: Local antimicrobial delivery via calcium sulfate (CaSO 4 ) beads is used as an adjunctive treatment for periprosthetic joint infection. There is limited clinical information describing the performance of antimicrobial-loaded CaSO 4 (ALCS) in large-scale applications. We developed a simulated large joint model to study properties of eluting ALCS. Methods: The in vitro testing platform was an adapted standardized model for tribological testing of prosthetic total hips and total knees (ASTM F732). The model was 70 mL total fluid volume, 25 % bovine serum, and 75 % phosphate-buffered saline, using ISO standard 14242-1 for human synovial fluid simulation. Four brands of CaSO 4 were evaluated. Each 10 mL of CaSO 4 was loaded with 1.2 grams (g) of tobramycin and 1 g of vancomycin powders. A 35 mL bead volume, equaling 175 beads, of each product was placed in incubated flasks. The test period was 6 weeks with scheduled interval fluid exchanges. Fluid samples were tested for antibiotic and calcium concentrations and pH. Results: Antibiotic elution showed an initial burst on Day 1, followed by a logarithmic reduction over 1 week. Tobramycin fully eluted within 2.5 weeks. Vancomycin showed sustained release over 6 weeks. Calcium ion concentrations were high, with gradual decrease after 3 weeks. All four CaSO 4 products were inherently acidic. Fluid became more acidic with the addition of antibiotics primarily driven by vancomycin. Discussion: Clinicians should be cognizant of tobramycin elution burst with ALCS in large loads. The main driver of acidic pH levels was vancomycin. We propose that joint complications may result from lowered fluid acidity, and we suggest clinical study of synovial pH.

15.
Implant Dent ; 20(1): 56-67, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21278528

RESUMO

OBJECTIVE: Chitosan was investigated as a coating for local delivery of antimicrobials for prevention of acute implant infection. The objectives of this study were to (1) measure the release of 2 antimicrobials from chitosan coatings, (2) determine efficacy of eluted antimicrobials against bacteria, in vitro, and (3) evaluate toxicity of eluted drugs to host cells/tissues. METHODS: Chitosan coatings (80.7% deacetylated, 108 kDa) containing 20% tetracycline or 0.02% chlorhexidine digluconate were bonded to titanium via silane reactions. After elution in culture medium for 7 days, eluates were tested against model pathogens Actinobacillus actinomycetemcomitans and Staphylococcus epidermidis in turbidity tests and in 24-hour cytotoxicity tests using human osteoblasts and fibroblasts. Finally, antibiotic-loaded chitosan-coated titanium pins were implanted for 7 days in muscle of Sprague-Dawley rats to evaluate the initial tissue response. RESULTS: Coatings released 89% of tetracycline in 7 days and 100% chlorhexidine in 2 days. Released tetracycline inhibited growth (95%-99.9%) of pathogens for up to 7 days with no cytotoxicity to human cells. Released chlorhexidine was active against pathogens for 1 to 2 days (56%-99.5% inhibition) but was toxic to cells on the first day of elution. Typical acute inflammatory response was observed to antimicrobial-loaded chitosan coatings similar to unloaded coatings. CONCLUSION: These preliminary data support the hypothesis that chitosan coatings have the potential to locally deliver antimicrobials to inhibit bacteria without being toxic to host cells/tissues and warrant additional studies to evaluate the ability of the coatings to prevent/resist infection and promote osseointegration.


Assuntos
Anti-Infecciosos/administração & dosagem , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Implantes Dentários , Materiais Dentários/química , Titânio/química , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Animais , Anti-Infecciosos/toxicidade , Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clorexidina/administração & dosagem , Clorexidina/toxicidade , Meios de Cultivo Condicionados , Difusão , Portadores de Fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação , Teste de Materiais , Músculo Esquelético/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Staphylococcus epidermidis/efeitos dos fármacos , Propriedades de Superfície , Tetraciclina/administração & dosagem , Tetraciclina/toxicidade
16.
Dent Mater ; 37(1): 60-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208266

RESUMO

BACKGROUND: Electrospun chitosan membranes subjected to post-spinning processes using either triethylamine/tert-butyloxycarbonyl (TEA/tBOC) or butyryl-anhydride (BA) modifications to maintain nanofiber structure have exhibited potential for use in guided bone regeneration applications. The aim of this study was to evaluate ability of the modified membranes to support healing of bone-grafted defects as compared to a commercial collagen membrane. METHOD: TEA/tBOC-treated and BA-treated chitosan membranes were characterized for fiber morphology by electron microscopy, residual trifluoroacetic acid by19F NMR and endotoxin level using an endotoxin quantitation kit (ThermoScientific, US). Chitosan membranes were cut into 12 mm diameter disks. An 8 mm calvarial defect was created in each of 48 male rats and then filled with Bio-Oss (Geistlich, US) bone graft. The grafted defects were covered with either (1) TEA/tBOC-treated chitosan membrane (2) BA-treated chitosan membrane or (3) the control BioMend Extend (Zimmer Biomet, US) collagen membrane. After 3 and 8 weeks, the rats were euthanized and calvaria was retrieved for microCT and histological analyses (n = 8/group/time points). RESULTS: Both TEA/tBOC-treated and BA-treated membranes were composed of nanofibers in the ∼231 to ∼284 nm range respectively, exhibited no TFA salt residue and low endotoxin levels (≤0.1 ± 0.01 EU/membrane). All membranes supported increased bone growth from 3 weeks to 8 weeks though there was no significant difference among the membrane types. However, TEA/tBOC treated and BA treated chitosan membranes both showed significantly greater bone density (∼6% greater at 3 weeks and ∼8% greater at 8 weeks) as compared to BioMend Extend collagen membrane at both time points (p = 0.0002). CONCLUSIONS: Chitosan membranes supported better bone healing based on bone density than the collagen membrane.


Assuntos
Quitosana , Nanofibras , Animais , Regeneração Óssea , Colágeno , Masculino , Membranas Artificiais , Ratos , Crânio
17.
J Biomed Mater Res B Appl Biomater ; 109(11): 1735-1743, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33871933

RESUMO

Wounds resulting from surgeries, implantation of medical devices, and musculoskeletal trauma result in pain and can also result in infection of damaged tissue. Up to 80% of these infections are due to biofilm formation either on the surface of implanted devices or on surrounding wounded tissue. Bacteria within a biofilm have intrinsic growth and development characteristics that allow them to withstand up to 1,000 times the minimum inhibitory concentration of antibiotics, demonstrating the need for new therapeutics to prevent and treat these infections. Cis-2-decenoic acid (C2DA) is known to disperse preformed biofilms and can prevent biofilm formation entirely for some strains of bacteria. Additionally, local anesthetics like bupivacaine have been shown to have antimicrobial effects against multiple bacterial strains. This study sought to evaluate hexanoic acid-treated electrospun chitosan membranes (HA-ESCM) as wound dressings that release C2DA and bupivacaine to simultaneously prevent infection and alleviate pain associated with musculoskeletal trauma. Release profiles of both therapeutics were evaluated, and membranes were tested in vitro against Methicillin-resistant Staphylococcus aureus (MRSA) to determine efficacy in preventing biofilm infection and bacterial growth. Results indicate that membranes release both therapeutics for 72 hr, and release profile can be tailored by loading concentration. Membranes were effective in preventing biofilm growth but were toxic to fibroblasts when loaded with 2.5 or 5 mg of bupivacaine.


Assuntos
Antibacterianos , Bandagens , Quitosana/química , Membranas Artificiais , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Dor/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos
18.
Macromol Biosci ; 21(8): e2100123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34128589

RESUMO

Local delivery of active agents using injectable or implantable hydrogels for tissue and bone regeneration is a promising therapy, but it remains challenging for controlling dose and duration of release. Simvastatin (SMV), a hydrophobic drug, has shown potential for osteogenic stimulation. Secure loading of hydrophobic drugs by physical interactions is particularly difficult to establish in hydrophilic polymer matrices, and their sustained release over several months for long-term regeneration has rarely been reported. Additionally, mechanical properties of hydrogels must be improved for a sufficient support while maintaining eventual biodegradability. This study assesses the effect of controlled SMV release from 3D-printed triple-network hydrogels for osteogenic stimulation and characterizes their mechanical and biological properties as an implant. SMV is loaded into polymeric micelles of polylactide/poly(ethylene glycol) triblock copolymers (PLA-PEG-PLA) and mixed with N-methacryloyl chitosan and PEG dimethacrylate to fabricate hydrogels by photo-cross-linked 3D printing. The hydrogel properties and drug release profiles have shown significant dependance on the polymer compositions. The SMV release from the triple-polymer-network hydrogel has continued for 17 weeks of observation. Cytocompatibility of hydrogels with various formulations is confirmed. The tunable triple-network hydrogels loaded with SMV provide a potential therapeutic value for bone regeneration.


Assuntos
Quitosana , Hidrogéis , Quitosana/química , Quitosana/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Micelas , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Sinvastatina
19.
J Orthop Res ; 39(11): 2455-2464, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33470467

RESUMO

Antibiotic-loaded chitosan pastes have shown advantages in the treatment and coverage of complex musculoskeletal defects. We added mannitol, previously shown to increase antibiotic susceptibility of biofilm, to an injectable chitosan/polyethylene glycol paste for delivery of antibiotics. Ground sponges (0.85% acetic acid solution, 1% chitosan, 0% or 2% mannitol, 1% polyethylene glycol) were hydrated using phosphate-buffered saline with 10 mg/ml amikacin and 10 mg/ml vancomycin added to form pastes. We inoculated rabbit radial defects with 105 colony-forming units of Staphylococcus aureus (UAMS-1) and inserted titanium pins into the cortical bone. Groups compared included mannitol blend pastes, non-mannitol blends, antibiotic-loaded bone cement, vancomycin powder, and no treatment controls. We harvested tissue samples and retrieved the pins retrieved at 3 weeks. All antibiotic-loaded groups lowered bacterial growth and colony-forming unit counts in soft and bone tissue and on titanium pins in in vivo studies. The results indicate this biomaterial is capable of eluting active antibiotics at concentrations that reduce bacterial growth on biomaterials and tissue, which, in turn, may prevent biofilm formation. Blends of chitosan and mannitol may be useful in prevention and treatment of osteomyelitis and implant-associated infections.


Assuntos
Quitosana , Osteomielite , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Materiais Biocompatíveis , Manitol , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Osteomielite/prevenção & controle , Polietilenoglicóis , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Titânio , Vancomicina
20.
Clin Orthop Relat Res ; 468(8): 2074-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20352389

RESUMO

BACKGROUND: Open orthopaedic wounds are ideal sites for infection. Preventing infection in these wounds is critical for reducing patient morbidity and mortality, controlling antimicrobial resistance and lowering the cost of treatment. Localized drug delivery has the potential to overcome the challenges associated with traditional systemic dosing. A degradable, biocompatible polymer sponge (chitosan) that can be loaded with clinician-selected antibiotics at the point of care would provide the patient and clinician with a desirable, adjunctive preventive modality. QUESTIONS/PURPOSES: We asked (1) if an adaptable, porous chitosan matrix could absorb and elute antibiotics for 72 hours for potential use as an adjunctive therapy to débridement and lavage; and (2) if the sponges could elute levels of antibiotic that would inhibit growth of Staphylococcus aureus and Pseudomonas aeruginosa? METHODS: We fabricated a degradable chitosan sponge that can be loaded with antibiotics during a 60-second hydration in drug-containing solution. In vitro evaluation determined amikacin and vancomycin release from chitosan sponges at six time points. Activity tests were used to assess the release of inhibitory levels of amikacin and vancomycin. RESULTS: Amikacin concentration was 881.5 microg/mL after 1 hour with a gradual decline to 13.9 microg/mL after 72 hours. Vancomycin concentration was 1007.4 microg/mL after 1 hour with a decrease to 48.1 microg/mL after 72 hours. Zone of inhibition tests were used to verify inhibitory levels of drug release from chitosan sponges. A turbidity assay testing activity of released amikacin and vancomycin indicated inhibitory levels of elution from the chitosan sponge. CLINICAL RELEVANCE: Chitosan sponges may provide a potential local drug delivery device for preventing musculoskeletal infections.


Assuntos
Amicacina/farmacocinética , Antibacterianos/farmacocinética , Materiais Biocompatíveis/farmacocinética , Quitosana/farmacocinética , Vancomicina/farmacocinética , Amicacina/análise , Antibacterianos/análise , Materiais Biocompatíveis/análise , Portadores de Fármacos/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Infecção da Ferida Cirúrgica/prevenção & controle , Vancomicina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA