Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306823

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Assuntos
Encefalopatias , Mucopolissacaridose III , Cricetinae , Animais , Humanos , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Células CHO , Projetos Piloto , Cricetulus , Hidrolases/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatias/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
2.
Mol Ther ; 30(12): 3570-3586, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36348622

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.


Assuntos
Epigênese Genética , Insetos , Humanos , Camundongos , Animais , Células HEK293 , Camundongos Endogâmicos C57BL , RNA , Mamíferos
3.
J Biol Chem ; 295(39): 13556-13569, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32727849

RESUMO

Mutations in the galactosidase ß 1 (GLB1) gene cause lysosomal ß-galactosidase (ß-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. ß-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, ß-Gal only partially depends on PPCA, prompting us to investigate the role that ß-Gal plays in the multienzyme complex. Here, we demonstrate that ß-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human ß-Gal (rhß-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhß-Gal, followed by enzyme withdrawal, is sufficient to augment ß-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of ß-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhß-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of ß-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhß-Gal is a tunable approach that can safely augment ß-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


Assuntos
Terapia de Reposição de Enzimas , Fibroblastos/enzimologia , Lisossomos/enzimologia , Mucolipidoses , beta-Galactosidase/uso terapêutico , Animais , Células CHO , Cricetulus , Humanos , Lisossomos/genética , Camundongos , Camundongos Mutantes , Mucolipidoses/tratamento farmacológico , Mucolipidoses/enzimologia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo
4.
J Biol Chem ; 295(39): 13532-13555, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31481471

RESUMO

Autosomal recessive mutations in the galactosidase ß1 (GLB1) gene cause lysosomal ß-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human ß-gal (rhß-gal) produced in Chinese hamster ovary cells enabled direct and precise rhß-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhß-gal was sufficient for normalizing ß-gal activity and mediating substrate clearance for several weeks. We found that rhß-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor-mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhß-gal (100 µg) resulted in broad bilateral biodistribution of rhß-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhß-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of ß-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhß-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches.


Assuntos
Terapia de Reposição de Enzimas , Gangliosidose GM1/terapia , beta-Galactosidase/metabolismo , Animais , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Camundongos
5.
Toxicol Pathol ; 49(4): 950-962, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691530

RESUMO

Scoring demyelination and regeneration in hematoxylin and eosin-stained nerves poses a challenge even for the trained pathologist. This article demonstrates how combinatorial multiplex immunohistochemistry (IHC) and quantitative digital pathology bring new insights into the peripheral neuropathogenesis of the Twitcher mouse, a model of Krabbe disease. The goal of this investigational study was to integrate modern pathology tools to traditional anatomic pathology microscopy workflows, in order to generate quantitative data in a large number of samples, and aid the understanding of complex disease pathomechanisms. We developed a novel IHC toolkit using a combination of CD68, periaxin-1, phosphorylated neurofilaments and SOX-10 to interrogate inflammation, myelination, axonal size, and Schwann cell counts in sciatic nerves from 17-, 21-, 25-, and 35-day-old wild-type and Twitcher mice using self-customized digital image algorithms. Our quantitative analyses highlight that nerve macrophage infiltration and interstitial expansion are the earliest detectable changes in Twitcher nerves. By 17 days of age, while the diameter of axons is small, the number of myelinated axons is still normal. However, from 21 days onward Twitcher nerves contain 75% of wild-type myelinated nerve fiber numbers despite containing 3 times more Schwann cells. In 35-day-old Twitcher mice when demyelination is detectable, nerve myelination drops to 50%.


Assuntos
Leucodistrofia de Células Globoides , Nervo Isquiático , Animais , Axônios , Modelos Animais de Doenças , Camundongos , Camundongos Mutantes Neurológicos , Regeneração Nervosa
6.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29292164

RESUMO

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Assuntos
Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Fragmentos de Peptídeos/genética , Animais , Apoptose/genética , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hemofilia A/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue , Primatas , Regiões Promotoras Genéticas
7.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267636

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Assuntos
Acetilglucosaminidase/uso terapêutico , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitose , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparitina Sulfato/metabolismo , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose III/patologia , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Am J Hum Genet ; 91(6): 1108-14, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23200862

RESUMO

Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondrodysplasia caused by a gain-of-function mutation in fibroblast-growth-factor-receptor 3 (FGFR3). C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). Here, we report the pharmacological activity of a 39 amino acid CNP analog (BMN 111) with an extended plasma half-life due to its resistance to neutral-endopeptidase (NEP) digestion. In ACH human growth-plate chondrocytes, we demonstrated a decrease in the phosphorylation of extracellular-signal-regulated kinases 1 and 2, confirming that this CNP analog inhibits fibroblast-growth-factor-mediated MAPK activation. Concomitantly, we analyzed the phenotype of Fgfr3(Y367C/+) mice and showed the presence of ACH-related clinical features in this mouse model. We found that in Fgfr3(Y367C/+) mice, treatment with this CNP analog led to a significant recovery of bone growth. We observed an increase in the axial and appendicular skeleton lengths, and improvements in dwarfism-related clinical features included flattening of the skull, reduced crossbite, straightening of the tibias and femurs, and correction of the growth-plate defect. Thus, our results provide the proof of concept that BMN 111, a NEP-resistant CNP analog, might benefit individuals with ACH and hypochondroplasia.


Assuntos
Acondroplasia/tratamento farmacológico , Peptídeo Natriurético Tipo C/análogos & derivados , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Modelos Animais de Doenças , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Humanos , Camundongos , Mutação , Peptídeo Natriurético Tipo C/química , Peptídeo Natriurético Tipo C/fisiologia , Peptídeo Natriurético Tipo C/uso terapêutico , Tamanho do Órgão/efeitos dos fármacos , Radiografia , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/patologia , Resultado do Tratamento
10.
J Pharmacol Exp Ther ; 353(1): 132-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25650377

RESUMO

Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH.


Assuntos
Acondroplasia/tratamento farmacológico , Peptídeo Natriurético Tipo C/análogos & derivados , Neprilisina/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/genética , Acondroplasia/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Macaca fascicularis , Masculino , Camundongos , Células NIH 3T3 , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Natriurético Tipo C/uso terapêutico , Ratos , Proteínas Recombinantes/metabolismo
11.
Hum Gene Ther ; 35(1-2): 36-47, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126359

RESUMO

Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.


Assuntos
Prednisolona , Proteômica , Humanos , Camundongos , Animais , Regulação para Cima , Camundongos Endogâmicos C57BL , Hepatócitos , Transgenes , Corticosteroides , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Imunidade Inata , Dependovirus/genética , Vetores Genéticos/genética
12.
Cell Metab ; 5(4): 279-91, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17403372

RESUMO

The triglycerides in chylomicrons are hydrolyzed by lipoprotein lipase (LpL) along the luminal surface of the capillaries. However, the endothelial cell molecule that facilitates chylomicron processing by LpL has not yet been defined. Here, we show that glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) plays a critical role in the lipolytic processing of chylomicrons. Gpihbp1-deficient mice exhibit a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, resulting in milky plasma and plasma triglyceride levels as high as 5000 mg/dl. Normally, Gpihbp1 is expressed highly in heart and adipose tissue, the same tissues that express high levels of LpL. In these tissues, GPIHBP1 is located on the luminal face of the capillary endothelium. Expression of GPIHBP1 in cultured cells confers the ability to bind both LpL and chylomicrons. These studies strongly suggest that GPIHBP1 is an important platform for the LpL-mediated processing of chylomicrons in capillaries.


Assuntos
Quilomícrons/metabolismo , Lipólise/genética , Receptores de Lipoproteínas/fisiologia , Animais , Células CHO , Quilomícrons/sangue , Cricetinae , Cricetulus , Ingestão de Alimentos/fisiologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Coelhos , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Transfecção
13.
J Orthop Res ; 40(10): 2391-2401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34996123

RESUMO

Hereditary multiple exostoses (HME) is a rare, pediatric disorder characterized by osteochondromas that form along growth plates and provoke significant musculoskeletal problems. HME is caused by mutations in heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. Seemingly paradoxically, osteochondromas were found to contain excessive extracellular heparanase (Hpse) that could further reduce HS levels and exacerbate pathogenesis. To test Hpse roles, we asked whether its ablation would protect against osteochondroma formation in a conditional HME model consisting of mice bearing floxed Ext1 alleles in Agr-CreER background (Ext1f/f ;Agr-CreER mice). Mice were crossed with a new global Hpse-null (Hpse-/- ) mice to produce compound Hpse-/- ;Ext1f/f ;Agr-CreER mice. Tamoxifen injection of standard juvenile Ext1f/f ;Agr-CreER mice elicited stochastic Ext1 ablation in growth plate and perichondrium, followed by osteochondroma formation, as revealed by microcomputed tomography and histochemistry. When we examined companion conditional Ext1-deficient mice lacking Hpse also, we detected no major decreases in osteochondroma number, skeletal distribution, and overall structure by the analytical criteria above. The Ext1 mutants used here closely mimic human HME pathogenesis, but have not been previously tested for responsiveness to treatments. To exclude some innate therapeutic resistance in this stochastic model, tamoxifen-injected Ext1f/f ;Agr-CreER mice were administered daily doses of the retinoid Palovarotene, previously shown to prevent ectopic cartilage and bone formation in other mouse disease models. This treatment did inhibit osteochondroma formation compared with vehicle-treated mice. Our data indicate that heparanase is not a major factor in osteochondroma initiation and accumulation in mice. Possible roles of heparanase upregulation in disease severity in patients are discussed.


Assuntos
Neoplasias Ósseas , Exostose Múltipla Hereditária , Glucuronidase , N-Acetilglucosaminiltransferases , Osteocondroma , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Criança , Modelos Animais de Doenças , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/metabolismo , Exostose Múltipla Hereditária/patologia , Glucuronidase/genética , Glucuronidase/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Osteocondroma/genética , Osteocondroma/metabolismo , Osteocondroma/patologia , Retinoides , Tamoxifeno , Microtomografia por Raio-X
14.
Mol Ther Methods Clin Dev ; 24: 142-153, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036471

RESUMO

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype 5 (AAV5)-based gene therapy vector containing a B-domain-deleted human coagulation factor VIII (hFVIII) gene controlled by a liver-selective promoter. AAV5-hFVIII-SQ is currently under clinical investigation as a treatment for severe hemophilia A. The full-length AAV5-hFVIII-SQ is >4.9 kb, which is over the optimal packaging limit of AAV5. Following administration, the vector must undergo a number of genome-processing, assembly, and repair steps to form full-length circularized episomes that mediate long-term FVIII expression in target tissues. To understand the processing kinetics of the oversized AAV5-hFVIII-SQ vector genome into circular episomes, we characterized the various molecular forms of the AAV5-hFVIII-SQ genome at multiple time points up to 6 months postdose in the liver of murine and non-human primate models. Full-length circular episomes were detected in liver tissue beginning 1 week postdosing. Over 6 months, quantities of circular episomes (in a predominantly head-to-tail configuration) increased, while DNA species lacking inverted terminal repeats were preferentially degraded. Levels of duplex, circular, full-length genomes significantly correlated with levels of hFVIII-SQ RNA transcripts in mice and non-human primates dosed with AAV5-hFVIII-SQ. Altogether, we show that formation of full-length circular episomes in the liver following AAV5-hFVIII-SQ transduction was associated with long-term FVIII expression.

15.
Nat Med ; 28(4): 789-797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411075

RESUMO

Factor VIII gene transfer with a single intravenous infusion of valoctocogene roxaparvovec (AAV5-hFVIII-SQ) has demonstrated clinical benefits lasting 5 years to date in people with severe hemophilia A. Molecular mechanisms underlying sustained AAV5-hFVIII-SQ-derived FVIII expression have not been studied in humans. In a substudy of the phase 1/2 clinical trial ( NCT02576795 ), liver biopsy samples were collected 2.6-4.1 years after gene transfer from five participants. Primary objectives were to examine effects on liver histopathology, determine the transduction pattern and percentage of hepatocytes transduced with AAV5-hFVIII-SQ genomes, characterize and quantify episomal forms of vector DNA and quantify transgene expression (hFVIII-SQ RNA and hFVIII-SQ protein). Histopathology revealed no dysplasia, architectural distortion, fibrosis or chronic inflammation, and no endoplasmic reticulum stress was detected in hepatocytes expressing hFVIII-SQ protein. Hepatocytes stained positive for vector genomes, showing a trend for more cells transduced with higher doses. Molecular analysis demonstrated the presence of full-length, inverted terminal repeat-fused, circular episomal genomes, which are associated with long-term expression. Interindividual differences in transgene expression were noted despite similar successful transduction, possibly influenced by host-mediated post-transduction mechanisms of vector transcription, hFVIII-SQ protein translation and secretion. Overall, these results demonstrate persistent episomal vector structures following AAV5-hFVIII-SQ administration and begin to elucidate potential mechanisms mediating interindividual variability.


Assuntos
Dependovirus , Hemofilia A , Dependovirus/genética , Dependovirus/metabolismo , Fator VIII/genética , Fator VIII/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos , RNA Mensageiro , Transgenes/genética
16.
Mol Ther Methods Clin Dev ; 26: 61-71, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35782594

RESUMO

Recombinant adeno-associated virus (AAV) is an effective platform for therapeutic gene transfer; however, tissue-tropism differences between species are a challenge for successful translation of preclinical results to humans. We evaluated the use of in vitro primary hepatocyte cultures to predict in vivo liver-directed AAV expression in different species. We assessed whether in vitro AAV transduction assays in cultured primary hepatocytes from mice, nonhuman primates (NHPs), and humans could model in vivo liver-directed AAV expression of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), an experimental gene therapy for hemophilia A with a hepatocyte-selective promoter. Relative levels of DNA and RNA in hepatocytes grown in vitro correlated with in vivo liver transduction across species. Expression in NHP hepatocytes more closely reflected expression in human hepatocytes than in mouse hepatocytes. We used this hepatocyte culture model to assess transduction efficacy of a novel liver-directed AAV capsid across species and identified which of 3 different canine factor VIII vectors produced the most transgene expression. Results were confirmed in vivo. Further, we determined mechanisms mediating inhibition of AAV5-hFVIII-SQ expression by concomitant isotretinoin using primary human hepatocytes. These studies support using in vitro primary hepatocyte models to predict species translatability of liver-directed AAV gene therapy and improve mechanistic understanding of drug-drug interactions.

17.
Mol Ther Methods Clin Dev ; 26: 519-531, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092364

RESUMO

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.

18.
Mol Genet Metab ; 104(3): 325-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21784683

RESUMO

Late infantile neuronal ceroid lipofuscinosis (LINCL) is caused by mutations in the gene encoding tripeptidyl-peptidase 1 (TPP1). LINCL patients accumulate lysosomal storage materials in the CNS accompanied by neurodegeneration, blindness, and functional decline. Dachshunds homozygous for a null mutation in the TPP1 gene recapitulate many symptoms of the human disease. The objectives of this study were to determine whether intrathecal (IT) TPP1 treatment attenuates storage accumulation and functional decline in TPP1-/- Dachshunds and to characterize the CNS distribution of TPP1 activity. TPP1 was administered to one TPP1-/- and one homozygous wild-type (WT) dog. An additional TPP1-/- and WT dog received vehicle. Four IT administrations of 32 mg TPP1 formulated in 2.3 mL of artificial cerebrospinal fluid (aCSF) or vehicle were administered monthly via the cerebellomedullary cistern from four to seven months of age. Functional decline was assessed by physical and neurological examinations, electrophysiology, and T-maze performance. Neural tissues were collected 48 h after the fourth administration and analyzed for TPP1 activity and autofluorescent storage material. TPP1 was distributed at greater than WT levels in many areas of the CNS of the TPP1-/- dog administered TPP1. The amount of autofluorescent storage was decreased in this dog relative to the vehicle-treated affected control. No improvement in overall function was observed in this dog compared to the vehicle-treated TPP1-/- littermate control. These results demonstrate for the first time in a large animal model of LINCL widespread delivery of biochemically active TPP1 to the brain after IT administration along with a decrease in lysosomal storage material. Further studies with this model will be necessary to optimize the dosing route and regimen to attenuate functional decline.


Assuntos
Aminopeptidases/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia , Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/metabolismo , Serina Proteases/farmacologia , Aminopeptidases/administração & dosagem , Aminopeptidases/sangue , Aminopeptidases/genética , Aminopeptidases/uso terapêutico , Animais , Células CHO , Sistema Nervoso Central/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Cães , Eletrofisiologia , Fluorescência , Técnicas de Inativação de Genes , Humanos , Imunoensaio , Imunoglobulina E/sangue , Injeções Espinhais , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Serina Proteases/administração & dosagem , Serina Proteases/sangue , Serina Proteases/genética , Serina Proteases/uso terapêutico , Tripeptidil-Peptidase 1
19.
Arterioscler Thromb Vasc Biol ; 30(1): 54-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19834105

RESUMO

UNLABELLED: Background- We hypothesized that molecular imaging of endothelial cell adhesion molecule expression could noninvasively evaluate prelesion atherogenic phenotype. METHODS AND RESULTS: Mice deficient for the LDL-receptor and the Apobec-1 editing peptide (DKO mice) were studied as an age-dependent model of atherosclerosis. At 10, 20, and 40 weeks of age, ultrasound molecular imaging of the proximal thoracic aorta was performed with contrast agents targeted to P-selectin and VCAM-1. Atherosclerotic lesion severity and content were assessed by ultrahigh frequency ultrasound, histology, and immunohistochemistry. In wild-type mice at all ages, there was neither aortic thickening nor targeted tracer signal enhancement. In DKO mice, lesions progressed from sparse mild intimal thickening at 10 weeks to widespread severe lesions with luminal encroachment at 40 weeks. Molecular imaging for P-selectin and VCAM-1 demonstrated selective signal enhancement (P<0.01 versus nontargeted agent) at all ages for DKO mice. P-selectin and VCAM-1 signal in DKO mice were greater by 3-fold at 10 weeks, 4- to 6-fold at 20 weeks, and 9- to 10-fold at 40 weeks compared to wild-type mice. En face microscopy demonstrated preferential attachment of targeted microbubbles to regions of lesion formation. CONCLUSIONS: Noninvasive ultrasound molecular imaging of endothelial activation can detect lesion-prone vascular phenotype before the appearance of obstructive atherosclerotic lesions.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aorta Torácica/metabolismo , Aterosclerose , Células Endoteliais/diagnóstico por imagem , Células Endoteliais/metabolismo , Animais , Aorta Torácica/imunologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/imunologia , Aterosclerose/metabolismo , Velocidade do Fluxo Sanguíneo , Adesão Celular/imunologia , Modelos Animais de Doenças , Diagnóstico Precoce , Ecocardiografia , Células Endoteliais/imunologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selectina-P/metabolismo , Fenótipo , Receptores de LDL/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Nutrients ; 13(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371918

RESUMO

Effective actions for the fishery and aquaculture sectors to contribute toward improving nutrition rely on an understanding of the factors influencing fish intake, particularly amongst vulnerable populations. This scoping review synthesises evidence from 33 studies in the African Great Lakes Region to examine the influence of food environments on fish acquisition and consumption. We identified only two studies that explicitly applied a food environment framework and none that linked policy conditions with the contribution of fish to diets. Economic access to fish was represented in the largest number of included studies (21 studies), followed by preferences, acceptability and desirability of fish (17 studies) and availability and physical access (14 studies). Positive perceptions of taste and low cost, relative to other animal-source foods, were drivers of fish purchases in many settings; however, limited physical and economic access were frequently identified as preventing optimal intake. In lakeside communities, fish were increasingly directed toward external markets which reduced the availability and affordability of fish for local households. Few studies considered intra-household variations in fish access according to age, gender or physiological status, which represents an important knowledge gap. There is also scope for future research on seasonal influences on fish access and the design and rigorous evaluation of programmes and policies that address one or more constraints of availability, cost, convenience and preferences.


Assuntos
Comportamento Alimentar , Pesqueiros , Peixes , Abastecimento de Alimentos , Alimentos Marinhos , África Subsaariana , Animais , Pesqueiros/economia , Cadeia Alimentar , Abastecimento de Alimentos/economia , Humanos , Lagos , Valor Nutritivo , Recomendações Nutricionais , Alimentos Marinhos/economia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA