Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 12(3): 320-5, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10801469

RESUMO

Several papers published within the last year utilize innovative techniques for characterizing intermediates in RNA polymerase II transcription. Structural studies of polymerase and its associated factors provide a detailed picture of the transcription machinery, and studies of transcription complex assembly both in vitro and in vivo provide insights into the mechanism of gene expression. A high resolution picture of the transcription complex is likely to be available within the foreseeable future. The challenge is to determine the roles of individual proteins within this surprisingly large molecular machine.


Assuntos
RNA Polimerase II/metabolismo , Transcrição Gênica , Humanos , Mutação , RNA/genética , RNA/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Science ; 255(5048): 1130-2, 1992 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-1546314

RESUMO

Transcription factor IID (TFIID) recognizes the TATA element of promoters transcribed by RNA polymerase II (RNAPII) and serves as the base for subsequent association by other general transcription factors and RNAPII. The carboxyl-terminal domain of TFIID is highly conserved and contains an imperfect repetition of a 60-amino acid sequence. These repeats are separated by a region rich in basic amino acids. Mutagenesis of the lysines in this region resulted in a conditioned phenotype in vivo, and the mutant proteins were defective for interactions with transcription factor IIA in vitro. Binding of TFIID to DNA was unaffected. These results suggest that the basic domain of TFIID is important for protein-protein interactions.


Assuntos
Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae , Fator de Transcrição TFIIA , Fator de Transcrição TFIID
3.
Trends Biochem Sci ; 22(6): 189-92, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9204702

RESUMO

How transcription and translation initiation complexes are assembled and regulated has been the subject of research for many years. New information on the translation initiation complex has revealed similarities between its organization and regulation with that of the transcription initiation complex. Here, we will summarize these similarities in order to set up a framework for future integration of results from each of these areas.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Genéticos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
Mol Cell Biol ; 17(9): 5288-98, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9271406

RESUMO

Biochemical analysis of proteins necessary for transcription initiation by eukaryotic RNA polymerase II (pol II) has identified transcription factor IIE (TFIIE) as an essential component of the reaction. To better understand the role of TFIIE in transcription, we isolated conditional alleles of TFA1, the gene encoding the large subunit of TFIIE in the yeast Saccharomyces cerevisiae. The mutant Tfa1 proteins fall into two classes. The first class causes thermosensitive growth due to single amino acid substitutions of the cysteines comprising the Zn-binding motif. The second mutant class is made up of proteins that are C-terminally truncated and that cause a cold-sensitive growth phenotype. The behavior of these mutants suggests that Tfa1p possesses at least two domains with genetically distinct functions. The mutations in the Zn-binding motif do not affect the mutant protein's stability at the nonpermissive temperature or its ability to associate with the small subunit of TFIIE. Our studies further determined that wild-type TFIIE can bind to single-stranded DNA in vitro. However, this property is unaffected in the mutant TFIIE complexes. Finally, we have demonstrated the biological importance of TFIIE in pol II-mediated transcription by depleting the Tfa1 protein from the cells and observing a concomitant decrease in total poly(A)+ mRNA.


Assuntos
Saccharomyces cerevisiae/genética , Fatores de Transcrição TFII , Fatores de Transcrição/genética , Sítios de Ligação , DNA de Cadeia Simples/metabolismo , Mutação , Conformação Proteica , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Raios Ultravioleta , Zinco/metabolismo
5.
Mol Cell Biol ; 10(10): 5562-4, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-2398901

RESUMO

RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.


Assuntos
RNA Polimerase II/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Quimotripsina/farmacologia , Técnicas In Vitro , Substâncias Macromoleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Fator de Transcrição TFIID , Fatores de Transcrição/metabolismo
6.
Mol Cell Biol ; 20(24): 9307-16, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11094081

RESUMO

The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5'-triphosphatase (Cet1) and an mRNA guanylyltransferase (Ceg1). In yeast, the capping enzyme is recruited to the RNA polymerase II (Pol II) transcription complex via an interaction between Ceg1 and the phosphorylated carboxy-terminal domain of the Pol II largest subunit. Previous in vitro experiments showed that the Cet1 carboxy-terminal region (amino acids 265 to 549) carries RNA triphosphatase activity, while the region containing amino acids 205 to 265 of Cet1 has two functions: it mediates dimerization with Ceg1, but it also allosterically activates Ceg1 guanylyltransferase activity in the context of Pol II binding. Here we characterize several Cet1 mutants in vivo. Mutations or deletions of Cet1 that disrupt interaction with Ceg1 are lethal, showing that this interaction is essential for proper capping enzyme function in vivo. Remarkably, the interaction region of Ceg1 becomes completely dispensable when Ceg1 is substituted by the mouse guanylyltransferase, which does not require allosteric activation by Cet1. Although no interaction between Cet1 and mouse guanylyltransferase is detectable, both proteins are present at yeast promoters in vivo. These results strongly suggest that the primary physiological role of the Ceg1-Cet1 interaction is to allosterically activate Ceg1, rather than to recruit Cet1 to the Pol II complex.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Nucleotidiltransferases/metabolismo , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Genes Reporter , Immunoblotting , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Plasmídeos/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Cell Biol ; 9(2): 820-2, 1989 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2651905

RESUMO

The adenovirus major late transcription factor (MLTF), or upstream stimulatory factor, is a human promoter-specific transcription factor which recognizes the near-palindromic sequence GGCCACGTGACC (R. W. Carthew, L. A. Chodosh, and P. A. Sharp, Cell 43:439-448, 1985; L. A. Chodosh, R. W. Carthew, and P. A. Sharp, Mol. Cell. Biol. 6:4723-4733, 1986; M. Sawadogo and R. G. Roeder, Cell 43:165-175, 1985). We describe here a protein found in the yeast Saccharomyces cerevisiae which possesses DNA-binding properties that are virtually identical to those of human MLTF. These two proteins recognize the same DNA-binding site, make the same purine nucleotide contacts, and are affected in the same manner by mutations in the MLTF-binding site.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Adenoviridae/metabolismo , Sequência de Bases , Sítios de Ligação , Evolução Biológica , DNA/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Proteínas Virais
8.
Mol Cell Biol ; 20(1): 104-12, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10594013

RESUMO

The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer consensus YSPTSPS, is particularly important. We sought to identify the CTD kinase responsible for capping enzyme targeting. The candidate kinases Kin28-Ccl1, CTDK1, and Srb10-Srb11 can each phosphorylate a glutathione S-transferase-CTD fusion protein such that capping enzyme can bind in vitro. However, kin28 mutant alleles cause reduced Ceg1 levels in vivo and exhibit genetic interactions with a mutant ceg1 allele, while srb10 or ctk1 deletions do not. Therefore, only the TFIIH-associated CTD kinase Kin28 appears necessary for proper capping enzyme targeting in vivo. Interestingly, levels of the polyadenylation factor Pta1 are also reduced in kin28 mutants, while several other polyadenylation factors remain stable. Pta1 in yeast extracts binds specifically to the phosphorylated CTD, suggesting that this interaction may mediate coupling of polyadenylation and transcription.


Assuntos
Quinases Ciclina-Dependentes , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae
9.
Mol Cell Biol ; 15(4): 2288-93, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7891722

RESUMO

The essential TFB1 and SSL1 genes of the yeast Saccharomyces cerevisiae encode two subunits of the RNA polymerase II transcription factor TFIIH (factor b). Here we show that extracts of temperature-sensitive mutants carrying mutations in both genes (tfb1-101 and ssl1-1) are defective in nucleotide excision repair (NER) and RNA polymerase II transcription but are proficient for base excision repair. RNA polymerase II-dependent transcription at the CYC1 promoter was normal at permissive temperatures but defective in extracts preincubated at a restrictive temperature. In contrast, defective NER was observed at temperatures that are permissive for growth. Additionally, both mutants manifested increased sensitivity to UV radiation at permissive temperatures. The extent of this sensitivity was not increased in a tfb1-101 strain and was only slightly increased in a ssl1-1 strain at temperatures that are semipermissive for growth. Purified factor TFIIH complemented defective NER in both tfb1-101 and ssl1-1 mutant extracts. These results define TFB1 and SSL1 as bona fide NER genes and indicate that, as is the case with the yeast Rad3 and Ss12 (Rad25) proteins, Tfb1 and Ssl1 are required for both RNA polymerase II basal transcription and NER. Our results also suggest that the repair and transcription functions of Tfb1 and Ssl1 are separable.


Assuntos
Reparo do DNA/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Bases , Relação Dose-Resposta à Radiação , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Dados de Sequência Molecular , Mutação , Tolerância a Radiação/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Frações Subcelulares/metabolismo , Fator de Transcrição TFIIH , Raios Ultravioleta
12.
Genet Eng (N Y) ; 16: 1-9, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7765192

RESUMO

The yeast RNA polymerase III system is probably the best-characterized eukaryotic transcription system. Nearly all of the components have been identified and the genes for them cloned. Many of the interactions within initiation complexes are coming to light. Considering the many parallels between Pol III transcription and the other polymerase systems, findings in the Pol III system can act as predictions for Pol II and Pol I transcription. Despite the many advances made in the study of transcription by RNA polymerase III, many important questions remain to be answered. It is unclear what are the functions of individual TFIIIC, TFIIIB and polymerase subunits. Why are so many proteins required? Another extremely important mystery is the mechanism by which the factors assemble. What is the molecular mechanism for TFIIIC recruiting TFIIIB, and how does TFIIIB recruit polymerase? These and many other problems will eventually be solved as researchers apply the biochemical and genetic techniques available in the yeast system.


Assuntos
RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo
13.
Man Ther ; 6(4): 205-12, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11673930

RESUMO

The treatment of lateral epicondylalgia, a widely-used model of musculoskeletal pain in the evaluation of many physical therapy treatments, remains somewhat of an enigma. The protagonists of a new treatment technique for lateral epicondylalgia report that it produces substantial and rapid pain relief, despite a lack of experimental evidence. A randomized, double blind, placebo-controlled repeated-measures study evaluated the initial effect of this new treatment in 24 patients with unilateral, chronic lateral epicondylalgia. Pain-free grip strength was assessed as an outcome measure before, during and after the application of the treatment, placebo and control conditions. Pressure-pain thresholds were also measured before and after the application of treatment, placebo and control conditions. The results demonstrated a significant and substantial increase in pain-free grip strength of 58% (of the order of 60 N) during treatment but not during placebo and control. In contrast, the 10% change in pressure-pain threshold after treatment, although significantly greater than placebo and control, was substantially smaller than the change demonstrated for pain-free grip strength. This effect was only present in the affected limb. The selective and specific effect of this treatment technique provides a valuable insight into the physical modulation of musculoskeletal pain and requires further investigation.


Assuntos
Força da Mão , Manipulação Ortopédica/métodos , Cotovelo de Tenista/terapia , Adulto , Idoso , Análise de Variância , Artralgia/diagnóstico , Artralgia/etiologia , Doença Crônica , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Amplitude de Movimento Articular , Cotovelo de Tenista/fisiopatologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-21447819

RESUMO

The carboxy-terminal domain (CTD) of the RNA polymerase II subunit Rpb1 undergoes dynamic phosphorylation, with different phosphorylation sites predominating at different stages of transcription. Our laboratory studies show how various mRNA-processing and chromatin-modifying enzymes interact with the phosphorylated CTD to efficiently produce mRNAs. The H3K36 methyltransferase Set2 interacts with CTD carrying phosphorylations characteristic of downstream elongation complexes, and the resulting cotranscriptional H3K36 methylation targets the Rpd3S histone deacetylase to downstream transcribed regions. Although positively correlated with gene activity, this pathway actually inhibits transcription elongation as well as initiation from cryptic promoters within genes. During early elongation, CTD serine 5 phosphorylation helps recruit the H3K4 methyltransferase complex containing Set1. Within 5' transcribed regions, cotranscriptional H3K4 dimethylation (H3K4me2) by Set1 recruits the deacetylase complex Set3C. Finally, H3K4 trimethylation at the most promoter-proximal nucleosomes is thought to stimulate transcription by promoting histone acetylation by complexes containing the ING/Yng PHD finger proteins. Surprisingly, the Rpd3L histone deacetylase complex, normally a transcription repressor, may also recognize H3K4me3. Together, the cotranscriptional histone methylations appear to function primarily to distinguish active promoter regions, which are marked by high levels of acetylation and nucleosome turnover, from the deacetylated, downstream transcribed regions of genes.


Assuntos
Histonas/metabolismo , Transcrição Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Metilação , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
16.
Proc Natl Acad Sci U S A ; 90(12): 5633-7, 1993 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-8516312

RESUMO

Transcription factor TFIIB is an essential component of the RNA polymerase II initiation complex. TFIIB carries out at least two functions: it interacts directly with the TATA-binding protein (TBP) and helps to recruit RNA polymerase II into the initiation complex. The sequence of TFIIB reveals a potential zinc-binding domain and an imperfect duplication of approximately 70 amino acids. Mutagenesis of cysteine codons within the putative zinc finger results in mutant proteins that bind normally to TBP but are unable to recruit RNA polymerase II-TFIIF into the initiation complex. Changing the two most highly conserved amino acids in the TFIIB repeats reduces the ability of TFIIB to interact with TBP. Therefore, the two functions of TFIIB can be assigned to two separable functional domains of the protein.


Assuntos
Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Humanos , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , RNA Polimerase II/metabolismo , Ratos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Fatores de Transcrição/isolamento & purificação , Xenopus laevis , Dedos de Zinco/genética
17.
Cell ; 71(2): 221-30, 1992 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-1423590

RESUMO

The TDS4 gene of S. cerevisiae was isolated as an allele-specific high copy suppressor of mutations within the basic region of the TATA-binding protein (TBP). The gene is essential for viability and encodes a 596 aa protein. The first 300 aa of the TDS4 protein exhibit significant sequence similarity to the RNA polymerase II transcription factor TFIIB. However, TDS4 is required for RNA polymerase III transcription in vivo and in vitro. Antibodies specific for TDS4 or TBP react with the TFIIIB complex, indicating that both proteins are components of the RNA polymerase III initiation complex. These findings suggest that the RNA polymerase II and III initiation mechanisms are extremely similar, and they explain how the TATA-binding protein can function in both systems.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Supressores , RNA Polimerase III , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional , Sequência de Aminoácidos , Sequência de Bases , Evolução Biológica , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Dedos de Zinco
18.
Nucleic Acids Res ; 23(5): 767-72, 1995 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-7708491

RESUMO

Yeast transcription factor TFIIH (also known as factor b) is a component of the RNA polymerase II initiation complex. Several TFIIH subunits (RAD3, SSL2 and SSL1) have also been implicated in DNA repair. Ssl1 interacts directly with another TFIIH subunit, Tfb1, which has not previously been shown to have a role in DNA repair. We isolated mutations in TFB1 that lead to a temperature sensitive phenotype. These mutations result in C-terminal truncations of the Tfb1 protein and disrupt its interaction with Ssl1. The C-terminal 114 amino acids of Tfb1 are necessary and sufficient for this interaction. Interestingly, cells carrying these truncations in Tfb1 cause sensitivity to ultraviolet (UV) light induced DNA damage, as previously observed for mutations in RAD3, SSL1 and SSL2. Many other mutations in RNA polymerase II basal factors were tested and found not to cause an increase in UV sensitivity, indicating that this phenotype is not due to a general defect in transcription.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura Alta , Mutação , Fator de Transcrição TFIIH , Fatores de Transcrição/genética , Raios Ultravioleta
19.
Proc Natl Acad Sci U S A ; 91(14): 6624-8, 1994 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-8022828

RESUMO

Nascent mRNA chains are capped at the 5' end by the addition of a guanylyl residue to form a G(5')ppp(5')N ... structure. During the capping reaction, the guanylyltransferase (GTP:mRNA guanylyltransferase, EC 2.7.7.50) is reversibly and covalently guanylylated. In this enzyme-GMP (E-GMP) intermediate, GMP is linked to the epsilon-amino group of a lysine residue via a phosphoamide bond. Lys-70 was identified as the GMP attachment site of the Saccharomyces cerevisiae guanylyltransferase (encoded by the CEG1 gene) by guanylylpeptide sequencing. CEG1 genes with substitutions at Lys-70 were unable to support viability in yeast and produced proteins that were not guanylylated in vitro. The CEG1 active site exhibits sequence similarity to the active sites of viral guanylyltransferases and polynucleotide ligases, suggesting similarity in the mechanisms of nucleotidyl transfer catalyzed by these enzymes.


Assuntos
DNA Ligases/química , Nucleotidiltransferases/química , RNA Ligase (ATP)/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Bactérias/enzimologia , Sequência de Bases , Sítios de Ligação , DNA Ligases/biossíntese , Primers do DNA , Genes Fúngicos , Dados de Sequência Molecular , Nucleotidiltransferases/biossíntese , Nucleotidiltransferases/metabolismo , Reação em Cadeia da Polimerase , RNA Ligase (ATP)/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Vírus/enzimologia
20.
Mol Cell ; 2(5): 663-73, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9844638

RESUMO

In yeast, the TBP-associated factors (TAFs) Taf17, Taf60, and Taf61(68) resemble histones H3, H4, and H2B, respectively. To analyze their roles in vivo, conditional alleles were isolated by mutagenizing their histone homology domains. Conditional alleles of TAF17 or TAF60 can be specifically suppressed by overexpression of any of the other histone-like TAFs. This and other genetic evidence supports the model of a histone octamer-like structure within TFIID. Shifting strains carrying the conditional TAF alleles to non-permissive conditions results in degradation of TFIID components and the rapid loss of mRNA production. Therefore, in contrast to previous studies in yeast that found only limited roles for TAFs in transcription, we find that the histone-like TAFs are generally required for in vivo transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Oxirredutases do Álcool , Alelos , Sequência de Aminoácidos , Aminoidrolases , Divisão Celular , Proteínas de Ligação a DNA/genética , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Histonas/genética , Dados de Sequência Molecular , Complexos Multienzimáticos , Mutagênese , Fenótipo , Pirofosfatases , RNA Polimerase II/metabolismo , RNA Mensageiro/análise , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Supressão Genética/genética , Transativadores/genética , Transativadores/metabolismo , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Fatores de Transcrição TFII/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA