Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Med ; 17(11): e1003229, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151971

RESUMO

BACKGROUND: Higher maternal plasma glucose (PG) concentrations, even below gestational diabetes mellitus (GDM) thresholds, are associated with adverse offspring outcomes, with DNA methylation proposed as a mediating mechanism. Here, we examined the relationships between maternal dysglycaemia at 24 to 28 weeks' gestation and DNA methylation in neonates and whether a dietary and physical activity intervention in pregnant women with obesity modified the methylation signatures associated with maternal dysglycaemia. METHODS AND FINDINGS: We investigated 557 women, recruited between 2009 and 2014 from the UK Pregnancies Better Eating and Activity Trial (UPBEAT), a randomised controlled trial (RCT), of a lifestyle intervention (low glycaemic index (GI) diet plus physical activity) in pregnant women with obesity (294 contol, 263 intervention). Between 27 and 28 weeks of pregnancy, participants had an oral glucose (75 g) tolerance test (OGTT), and GDM diagnosis was based on diagnostic criteria recommended by the International Association of Diabetes and Pregnancy Study Groups (IADPSG), with 159 women having a diagnosis of GDM. Cord blood DNA samples from the infants were interrogated for genome-wide DNA methylation levels using the Infinium Human MethylationEPIC BeadChip array. Robust regression was carried out, adjusting for maternal age, smoking, parity, ethnicity, neonate sex, and predicted cell-type composition. Maternal GDM, fasting glucose, 1-h, and 2-h glucose concentrations following an OGTT were associated with 242, 1, 592, and 17 differentially methylated cytosine-phosphate-guanine (dmCpG) sites (false discovery rate (FDR) ≤ 0.05), respectively, in the infant's cord blood DNA. The most significantly GDM-associated CpG was cg03566881 located within the leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) (FDR = 0.0002). Moreover, we show that the GDM and 1-h glucose-associated methylation signatures in the cord blood of the infant appeared to be attenuated by the dietary and physical activity intervention during pregnancy; in the intervention arm, there were no GDM and two 1-h glucose-associated dmCpGs, whereas in the standard care arm, there were 41 GDM and 160 1-h glucose-associated dmCpGs. A total of 87% of the GDM and 77% of the 1-h glucose-associated dmCpGs had smaller effect sizes in the intervention compared to the standard care arm; the adjusted r2 for the association of LGR6 cg03566881 with GDM was 0.317 (95% confidence interval (CI) 0.012, 0.022) in the standard care and 0.240 (95% CI 0.001, 0.015) in the intervention arm. Limitations included measurement of DNA methylation in cord blood, where the functional significance of such changes are unclear, and because of the strong collinearity between treatment modality and severity of hyperglycaemia, we cannot exclude that treatment-related differences are potential confounders. CONCLUSIONS: Maternal dysglycaemia was associated with significant changes in the epigenome of the infants. Moreover, we found that the epigenetic impact of a dysglycaemic prenatal maternal environment appeared to be modified by a lifestyle intervention in pregnancy. Further research will be needed to investigate possible medical implications of the findings. TRIAL REGISTRATION: ISRCTN89971375.


Assuntos
Diabetes Gestacional/epidemiologia , Dieta , Epigenoma , Estilo de Vida , Adulto , Dieta/efeitos adversos , Epigenoma/efeitos dos fármacos , Epigenoma/fisiologia , Exercício Físico/fisiologia , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Obesidade/epidemiologia , Obesidade/terapia , Gravidez
2.
Br J Nutr ; 124(9): 922-930, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-32513312

RESUMO

EPA and DHA are required for normal cell function and can also induce health benefits. Oily fish are the main source of EPA and DHA for human consumption. However, food choices and concerns about the sustainability of marine fish stocks limit the effectiveness of dietary recommendations for EPA + DHA intakes. Seed oils from transgenic plants that contain EPA + DHA are a potential alternative source of EPA and DHA. The present study investigated whether dietary supplementation with transgenic Camelina sativa seed oil (CSO) that contained EPA and DHA was as effective as fish oil (FO) in increasing EPA and DHA concentrations when consumed as a dietary supplement in a blinded crossover study. Healthy men and women (n 31; age 53 (range 20-74) years) were randomised to consume 450 mg/d EPA + DHA provided either as either CSO or FO for 8 weeks, followed by 6 weeks washout and then switched to consuming the other test oil. Fasting venous blood samples were collected at the start and end of each supplementation period. Consuming the test oils significantly (P < 0·05) increased EPA and DHA concentrations in plasma TAG, phosphatidylcholine and cholesteryl esters. There were no significant differences between test oils in the increments of EPA and DHA. There was no significant difference between test oils in the increase in the proportion of erythrocyte EPA + DHA (CSO, 12 %; P < 0·0001 and FO, 8 %; P = 0·02). Together, these findings show that consuming CSO is as effective as FO for increasing EPA and DHA concentrations in humans.


Assuntos
Brassicaceae/química , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Óleos de Plantas/farmacologia , Adulto , Idoso , Estudos Cross-Over , Eritrócitos/química , Feminino , Óleos de Peixe/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Plantas Geneticamente Modificadas/química , Sementes , Método Simples-Cego , Adulto Jovem
3.
Int J Obes (Lond) ; 43(5): 974-988, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30622309

RESUMO

BACKGROUND: The early life environment may influence susceptibility to obesity and metabolic disease in later life through epigenetic processes. SLC6A4 is an important mediator of serotonin bioavailability, and has a key role in energy balance. We tested the hypothesis that methylation of the SLC6A4 gene predicts adiposity across the life course. METHODS: DNA methylation at 5 CpGs within the SLC6A4 gene identified from a previous methyl binding domain array was measured by pyrosequencing. We measured DNA methylation in umbilical cord (UC) from children in the Southampton Women's Survey cohort (n = 680), in peripheral blood from adolescents in the Western Australian Pregnancy Cohort Study (n = 812), and in adipose tissue from lean and obese adults from the UK BIOCLAIMS cohort (n = 81). Real-time PCR was performed to assess whether there were corresponding alterations in gene expression in the adipose tissue. RESULTS: Lower UC methylation of CpG5 was associated with higher total fat mass at 4 years (p = 0.031), total fat mass at 6-7 years (p = 0.0001) and % fat mass at 6-7 years (p = 0.004). Lower UC methylation of CpG5 was also associated with higher triceps skinfold thickness at birth (p = 0.013), 6 months (p = 0.038), 12 months (p = 0.062), 2 years (p = 0.0003), 3 years (p = 0.00004) and 6-7 years (p = 0.013). Higher maternal pregnancy weight gain (p = 0.046) and lower parity (p = 0.029) were both associated with lower SLC6A4 CpG5 methylation. In adolescents, lower methylation of CpG5 in peripheral blood was associated with greater concurrent measures of adiposity including BMI (p ≤ 0.001), waist circumference (p = 0.011), subcutaneous fat (p ≤ 0.001) and subscapular, abdominal and suprailiac skinfold thicknesses (p = 0.002, p = 0.008, p = 0.004, respectively). In adipose tissue, methylation of both SLC6A4 CpG5 (p = 0.019) and expression of SLC6A4 (p = 0.008) was lower in obese compared with lean adults. CONCLUSIONS: These data suggest that altered methylation of CpG loci within SLC6A4 may provide a robust marker of adiposity across the life course.


Assuntos
Adiposidade/genética , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Doenças Metabólicas/genética , Obesidade/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Absorciometria de Fóton , Adolescente , Adulto , Austrália/epidemiologia , Biomarcadores/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA/genética , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Doenças Metabólicas/epidemiologia , Obesidade/epidemiologia , Regiões Promotoras Genéticas/genética
4.
Br J Nutr ; 121(6): 615-624, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30588897

RESUMO

Humans can obtain pre-formed long-chain PUFA from the diet and are also able to convert essential fatty acids (EFA) to longer-chain PUFA. The metabolic pathway responsible for EFA interconversion involves alternating desaturation and carbon chain elongation reactions, and carbon chain shortening by peroxisomal ß-oxidation. Studies using stable isotope tracers or diets supplemented with EFA show that capacity for PUFA synthesis is limited in humans, such that DHA (22 : 6n-3) synthesis in men is negligible. PUFA synthesis is higher in women of reproductive age compared with men. However, the magnitude of the contribution of hepatic PUFA synthesis to whole-body PUFA status remains unclear. A number of extra-hepatic tissues have been shown to synthesise PUFA or to express genes for enzymes involved in this pathway. The precise function of extra-hepatic PUFA synthesis is largely unknown, although in T lymphocytes PUFA synthesis is involved in the regulation of cell activation and proliferation. Local PUFA synthesis may also be important for spermatogenesis and fertility. One possible role of extra-hepatic PUFA synthesis is that it may provide PUFA in a timely manner to facilitate specific cell functions. If so, this may suggest novel insights into the effect of dietary PUFA and/or polymorphisms in genes involved in PUFA synthesis on health and tissue function.

5.
Br J Nutr ; 121(11): 1235-1246, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975228

RESUMO

EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.


Assuntos
Camellia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleos de Plantas/administração & dosagem , Adolescente , Adulto , Idoso , Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Ácidos Graxos não Esterificados/sangue , Feminino , Óleos de Peixe/química , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Óleos de Plantas/química , Plantas Geneticamente Modificadas/química , Período Pós-Prandial/efeitos dos fármacos , Sementes/química , Adulto Jovem
6.
Br J Nutr ; 119(12): 1400-1407, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734952

RESUMO

Arachidonic acid (ARA) and DHA, supplied primarily from the mother, are required for early development of the central nervous system. Thus, variations in maternal ARA or DHA status may modify neurocognitive development. We investigated the relationship between maternal ARA and DHA status in early (11·7 weeks) or late (34·5 weeks) pregnancy on neurocognitive function at the age of 4 years or 6-7 years in 724 mother-child pairs from the Southampton Women's Survey cohort. Plasma phosphatidylcholine fatty acid composition was measured in early and late pregnancy. ARA concentration in early pregnancy predicted 13 % of the variation in ARA concentration in late pregnancy (ß=0·36, P<0·001). DHA concentration in early pregnancy predicted 21 % of the variation in DHA concentration in late pregnancy (ß=0·46, P<0·001). Children's cognitive function at the age of 4 years was assessed by the Wechsler Preschool and Primary Scale of Intelligence and at the age of 6-7 years by the Wechsler Abbreviated Scale of Intelligence. Executive function at the age of 6-7 years was assessed using elements of the Cambridge Neuropsychological Test Automated Battery. Neither DHA nor ARA concentrations in early or late pregnancy were associated significantly with neurocognitive function in children at the age of 4 years or the age of 6-7 years. These findings suggest that ARA and DHA status during pregnancy in the range found in this cohort are unlikely to have major influences on neurocognitive function in healthy children.


Assuntos
Ácido Araquidônico/sangue , Cognição/fisiologia , Ácidos Docosa-Hexaenoicos/sangue , Adulto , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Estudos de Coortes , Inglaterra , Feminino , Humanos , Masculino , Troca Materno-Fetal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estudos Prospectivos , Escalas de Wechsler
7.
Biochim Biophys Acta ; 1861(7): 584-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27040510

RESUMO

BACKGROUND: We have previously shown that high fat (HF) feeding during pregnancy primes the development of non-alcoholic steatohepatits (NASH) in the adult offspring. However, the underlying mechanisms are unclear. AIMS: Since the endogenous molecular clock can regulate hepatic lipid metabolism, we investigated whether exposure to a HF diet during development could alter hepatic clock gene expression and contribute to NASH onset in later life. METHODS: Female mice were fed either a control (C, 7%kcal fat) or HF (45%kcal fat) diet. Offspring were fed either a C or HF diet resulting in four offspring groups: C/C, C/HF, HF/C and HF/HF. NAFLD progression, cellular redox status, sirtuin expression (Sirt1, Sirt3), and the expression of core clock genes (Clock, Bmal1, Per2, Cry2) and clock-controlled genes involved in lipid metabolism (Rev-Erbα, Rev-Erbß, RORα, and Srebp1c) were measured in offspring livers. RESULTS: Offspring fed a HF diet developed NAFLD. However HF fed offspring of mothers fed a HF diet developed NASH, coupled with significantly reduced NAD(+)/NADH (p<0.05, HF/HF vs C/C), Sirt1 (p<0.001, HF/HF vs C/C), Sirt3 (p<0.01, HF/HF vs C/C), perturbed clock gene expression, and elevated expression of genes involved lipid metabolism, such as Srebp1c (p<0.05, C/HF and HF/HF vs C/C). CONCLUSION: Our results suggest that exposure to excess dietary fat during early and post-natal life increases the susceptibility to develop NASH in adulthood, involving altered cellular redox status, reduced sirtuin abundance, and desynchronized clock gene expression.


Assuntos
Proteínas CLOCK/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Sirtuína 1/genética , Sirtuína 3/genética , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Oxirredução , Fotoperíodo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Biol Reprod ; 97(5): 762-771, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091992

RESUMO

Maternal liver undergoes structural and metabolic changes during pregnancy to meet the demands of the developing fetus. In rodents, this involves increased liver weight, but the mechanism remains unclear. To address this, we analyzed the histology, gene expression, and DNA methylation of livers of nonpregnant and pregnant C57/BL6 mice. Gestational liver growth in pregnant mice was accompanied by increased hepatocyte area and lower cell density (days 14 and 18). Expression of cell proliferation markers was increased on days 14 and 18. A total of 115 genes were differentially expressed on day 14 and 123 genes on day 18 (79 on both days). Pathway analysis indicated that pregnancy involves progressive increase in cell proliferation and decreased apoptosis. This was confirmed using archived data from the FVB wild-type mouse liver transcriptome. Four differentially DNA methylated and two differentially DNA hydroxymethylated regions identified on days 14 and 18 by methylome-wide analysis, but were not associated with altered gene expression. Long interspersed nuclear element-1 hypomethylation on days 14 and 18 was accompanied by increased ten-eleven translocase-2 and decreased DNA methyltransferase 3a and 3b expression. These findings suggest that gestational liver growth involves increased mitosis and hypertrophy, and decreased apoptosis contingent on pregnancy stage. Such changes may involve repetitive sequence, but not gene specific, DNA methylation.


Assuntos
Apoptose/fisiologia , Hiperplasia/veterinária , Fígado/crescimento & desenvolvimento , Transcriptoma , Animais , Estudos de Casos e Controles , DNA Metiltransferase 3A , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Prenhez
9.
Br J Nutr ; 116(5): 788-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27424661

RESUMO

Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Lipídeos/sangue , Lipídeos/química , Adulto , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Adulto Jovem
10.
Br J Nutr ; 115(6): 1043-60, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26878105

RESUMO

Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI -1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI -122, -20) % and 93 (95 % CI -116, -70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.


Assuntos
Gorduras Insaturadas na Dieta/análise , Ácidos Graxos Ômega-3/análise , Alimentos Orgânicos/análise , Ferro da Dieta/análise , Ácidos Linoleicos Conjugados/análise , Leite/química , alfa-Tocoferol/análise , Animais , Bovinos , Indústria de Laticínios , Prática Clínica Baseada em Evidências , Humanos , Iodo/análise , Gado , Valor Nutritivo , Selênio/análise
11.
Br J Nutr ; 115(6): 994-1011, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26878675

RESUMO

Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.


Assuntos
Dieta/veterinária , Alimentos Orgânicos/análise , Carne/análise , Criação de Animais Domésticos , Animais , Prática Clínica Baseada em Evidências , Humanos , Gado/crescimento & desenvolvimento , Produtos da Carne/análise , Valor Nutritivo
12.
Naturwissenschaften ; 103(7-8): 55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27300022

RESUMO

Early-life nutrition is an important determinant of both short- and long-term performance and fitness. The avian embryo develops within an enclosed package of nutrients, of which fatty acids (FA) are essential for many aspects of development. The FA composition of yolk depends on maternal nutrition and condition prior to egg formation, which may be affected by the external environment. To test if maternal environment affects yolk FA composition, we investigated whether the FA composition of great tit (Parus major) egg yolks differed between urban and rural habitats, and between deciduous and coniferous habitats. The results reveal differences in FA composition between eggs laid in urban and rural habitats, but not between eggs from the coniferous and deciduous habitats. To a large extent, this difference likely reflects dietary differences associated with urban habitats rather than dominating vegetation type. Specifically, urban yolks contained lower proportions of both ω-3 and ω-6 polyunsaturated FAs (PUFA), which are important for chick development. We also found a positive association between the proportion of saturated fatty acids and laying date, and a negative association between the proportion of ω-6 PUFA and clutch size. Given that urbanization is expanding rapidly, future studies should investigate whether factors such as anthropogenic food in the urban environment underlie these differences and whether they impair chick development.


Assuntos
Cycadopsida , Dieta , Ecossistema , Gema de Ovo/química , Ácidos Graxos/análise , Magnoliopsida , Passeriformes/fisiologia , Animais , Ácidos Graxos/química , Feminino , Florestas , População Rural , População Urbana
13.
J Hepatol ; 63(6): 1476-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272871

RESUMO

BACKGROUND & AIMS: Genetic variation in both patatin-like phospholipase domain-containing protein-3 (PNPLA3) (I148M) and the transmembrane 6 superfamily member 2 protein (TM6SF2) (E167K) influences severity of liver disease, and serum triglyceride concentrations in non-alcoholic fatty liver disease (NAFLD), but whether either genotype influences the responses to treatments is uncertain. METHODS: One hundred three patients with NAFLD were randomised to omega-3 fatty acids (DHA+EPA) or placebo for 15-18months in a double blind placebo controlled trial. Erythrocyte enrichment with DHA and EPA was measured by gas chromatography. PNPLA3 and TM6SF2 genotypes were measured by PCR technologies. Multivariable linear regression and analysis of covariance were undertaken to test the effect of genotypes on omega-3 fatty acid enrichment, end of study liver fat percentage and serum triglyceride concentrations. All models were adjusted for baseline measurements of each respective outcome. RESULTS: Fifty-five men and 40 women (Genotypes PNPLA3 I148M, 148I/I=41, 148I/M=43, 148M/M=11; TM6SF2 E167K 167E/E=78, 167E/K+167K/K=17 participants) (mean ± SD age, 51 ± 11 years) completed the trial. Adjusting for baseline measurement, measured covariates and confounders, PNPLA3 148M/M variant was independently associated with percentage of DHA enrichment (B coefficient -1.02 (95% CI -1.97, -0.07), p=0.036) but not percentage of EPA enrichment (B coefficient -0.31 (95% CI -1.38, 0.75), p=0.56). This genotype was also independently associated with end of study liver fat percentage (B coefficient 9.5 (95% CI 2.53, 16.39), p=0.008), but not end of study triglyceride concentration (B coefficient -0.11 (95% CI -0.64, 0.42), p=0.68). CONCLUSIONS: PNPLA3 148M/M variant influences the changes in liver fat and DHA tissue enrichment during the trial but not the change in serum triglyceride concentration.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Lipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Suplementos Nutricionais , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Variação Genética , Genótipo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue
14.
Curr Opin Clin Nutr Metab Care ; 17(2): 156-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24322369

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to assess the findings of recent studies on the effects of fatty acids on epigenetic process and the role of epigenetics in regulating fatty acid metabolism. RECENT FINDINGS: The DNA methylation status of the Fads2 promoter was increased in the liver of the offspring of mice fed an α-linolenic acid-enriched diet during pregnancy. In rats, increasing total maternal fat intake during pregnancy and lactation induced persistent hypermethylation of the Fads2 promoter in the liver and aortae of their offspring. However, increased fish oil intake in adult rats induced transient, reversible hypermethylation of Fads2. High-fat feeding in rodents also altered the levels of histone methylation in placentae and in adipose tissue. Dietary docosahexaenoic acid supplementation in pregnant women induced marginal changes in global DNA methylation in cord blood leukocytes. A high fat diet altered the DNA methylation status of specific genes in skeletal muscle in young men. SUMMARY: There are emerging findings that support the suggestion that fatty acids, in particular polyunsaturated fatty acids, can modify the epigenome. However, there is a need for rigorous investigations that assess directly the effect epigenetic modifications induced by fatty acids on gene function and metabolism.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dieta , Gorduras na Dieta/farmacologia , Epigênese Genética , Ácidos Graxos Insaturados/genética , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Feminino , Humanos , Masculino , Gravidez
15.
Cancer Treat Res ; 159: 269-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24114486

RESUMO

Epigenetic processes play a central role in regulating the tissue-specific expression of genes. Alterations in these processes can lead to profound changes in phenotype and have been implicated in the pathogenesis of many human diseases including human cancer. There is growing evidence that the environment, particularly variations in diet, during specific developmental periods can induce changes in the epigenome, which are then stably maintained throughout life influencing susceptibility to cancer in later life. This chapter will review the evidence that alterations in early life nutritional exposure can affect breast cancer risk through the altered epigenetic regulation of genes and discuss how detection of such altered epigenetic marks in early life may provide biomarkers to detect individuals at increased risk of disease.


Assuntos
Neoplasias da Mama/prevenção & controle , Epigênese Genética , Fenômenos Fisiológicos da Nutrição do Lactente , Fenômenos Fisiológicos da Nutrição Pré-Natal , Neoplasias da Mama/genética , Feminino , Humanos , Recém-Nascido , Fenótipo , Gravidez
16.
Front Immunol ; 14: 1206733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388745

RESUMO

Immune function changes across the life stages; for example, senior adults exhibit a tendency towards a weaker cell-mediated immune response and a stronger inflammatory response than younger adults. This might be partly mediated by changes in oxylipin synthesis across the life course. Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that modulate immune function and inflammation. A number of PUFAs are precursors to oxylipins, including the essential fatty acids (EFAs) linoleic acid (LA) and α-linolenic acid (ALA). LA and ALA are also substrates for synthesis of longer chain PUFAs. Studies with stable isotopes have shown that the relative amounts of LA and ALA can influence their partitioning by T lymphocytes between conversion to longer chain PUFAs and to oxylipins. It is not known whether the relative availability of EFA substrates influences the overall pattern of oxylipin secretion by human T cells or if this changes across the life stages. To address this, the oxylipin profile was determined in supernatants from resting and mitogen activated human CD3+ T cell cultures incubated in medium containing an EFA ratio of either 5:1 or 8:1 (LA : ALA). Furthermore, oxylipin profiles in supernatants of T cells from three life stages, namely fetal (derived from umbilical cord blood), adults and seniors, treated with the 5:1 EFA ratio were determined. The extracellular oxylipin profiles were affected more by the EFA ratio than mitogen stimulation such that n-3 PUFA-derived oxylipin concentrations were higher with the 5:1 EFA ratio than the 8:1 ratio, possibly due to PUFA precursor competition for lipoxygenases. 47 oxylipin species were measured in all cell culture supernatants. Extracellular oxylipin concentrations were generally higher for fetal T cells than for T cells from adult and senior donors, although the composition of oxylipins was similar across the life stages. The contribution of oxylipins towards an immunological phenotype might be due to the capacity of T cells to synthesize oxylipins rather than the nature of the oxylipins produced.


Assuntos
Ácidos Graxos Ômega-3 , Oxilipinas , Adulto , Humanos , Linfócitos T , Mitógenos , Ácidos Graxos Essenciais , Ácido Linoleico
17.
Lipids ; 58(4): 185-196, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177900

RESUMO

Tetracosahexaenoic acid (24:6ω-3) is an intermediate in the conversion of 18:3ω-3 to 22:6ω-3 in mammals. There is limited information about whether cells can assimilate and metabolize exogenous 24:6ω-3. This study compared the effect of incubation with 24:6ω-3 on the fatty acid composition of two related cell types, primary CD3+ T lymphocytes and Jurkat T cell leukemia, which differ in the integrity of the polyunsaturated fatty acid (PUFA) biosynthesis pathway. 24:6ω-3 was only detected in either cell type when cells were incubated with 24:6ω-3. Incubation with 24:6ω-3 induced similar increments in the amount of 22:6ω-3 in both cell types and modified the homeoviscous adaptations fatty acid composition induced by activation of T lymphocytes. The effect of incubation with 18:3ω-3 compared to 24:6ω-3 on the increment in 22:6ω-3 was tested in Jurkat cells because primary T cells cannot convert 18:3ω-3 to 22:6ω-3. The increment in the 22:6ω-3 content of Jurkat cells incubated with 24:6ω-3 was 19.5-fold greater than that of cells incubated with 18:3ω-3. Acyl-coA oxidase siRNA knockdown decreased the amount of 22:6ω-3 and increased the amount of 24:6ω-3 in Jurkat cells. These findings show exogenous 24:6ω-3 can be incorporated into primary human T lymphocytes and Jurkat cells and induces changes in fatty acid composition consistent with its conversion to 22:6ω-3 via a mechanism involving peroxisomal ß-oxidation that is regulated independently from the integrity of the upstream PUFA synthesis pathway. One further implication is that consuming 24:6ω-3 may be an effective alternative means of achieving health benefits attributed to 20:5ω-3 and 22:6ω-3.


Assuntos
Ácidos Graxos , Leucemia de Células T , Animais , Humanos , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Células Jurkat , Ácidos Docosa-Hexaenoicos/farmacologia , Mamíferos
18.
Curr Opin Clin Nutr Metab Care ; 15(5): 442-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22878237

RESUMO

PURPOSE OF REVIEW: This review critically evaluates recent advances in understanding the role of epigenetics in nutrition. Findings from animal models and human cohorts are discussed in the context of whether or not epigenetics may be an important factor in the progress towards the goal of personalised nutrition. RECENT FINDINGS: Maternal dietary fat, folic acid, protein and total energy intakes induce altered epigenetic regulation of specific genes in the offspring which are associated with altered tissue function. Passage of induced phenotypic and epigenetic traits between generations involves intergenerational modifications in the interaction between maternal phenotype and environment. The methylation of specific CpG loci in fetal tissues is associated with differential future risk of type 2 diabetes mellitus, and variation in adiposity and height. Methylation of specific CpGs in adult blood also marks differential risk of type 2 diabetes mellitus and breast cancer. Exercise induces acute changes in the methylation of genes in muscle. SUMMARY: Recent advances indicate that epigenetic variation is an important influence on interactions between nutrients and the genome, which modify disease risk. In contrast to the interaction between nutrition and gene polymorphisms, epigenetic variation can be modified by nutritional interventions to improve health outcomes.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Dieta , Epigênese Genética , Desenvolvimento Fetal/genética , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Animais , Exercício Físico/fisiologia , Feminino , Sequência Rica em GC , Loci Gênicos , Humanos , Nutrigenômica , Gravidez
19.
Br J Nutr ; 108(11): 1924-30, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23046900

RESUMO

Maternal folic acid (FA) supplementation is well recognised to protect against neural tube defects. Folate is a critical cofactor in one-carbon metabolism involved in the epigenetic regulation of transcription that underpins development. Thus, it is possible that maternal FA supplementation may have additional, unforeseen persistent effects in the offspring. This is supported by the modification by maternal supplementation with one-carbon donors and FA of the epigenetic regulation of offspring phenotype in mutant mice. The present article reviews studies in human subjects and experimental animals of the effect of maternal FA intake and phenotypic outcomes in the offspring. Maternal FA intake was associated with a short-term increased incidence of allergy-related respiratory impairment in children and multigenerational respiratory impairment in rats. Higher maternal folate status during pregnancy was associated positively with insulin resistance in 6-year-olds. In rats, maternal FA supplementation modified hepatic metabolism and vascular function through altered transcription, in some cases underpinned by epigenetic changes. FA supplementation in pregnant rats increased mammary tumorigenesis, but decreased colorectal cancer in the offspring. Maternal FA supplementation decreased a range of congenital cardiac defects in children. These findings support the view that maternal FA supplementation induces persistent changes in a number of phenotypic outcomes in the offspring. However, the number of studies is limited and insufficient to indicate a need to change current recommendations for FA intake in pregnancy. Nevertheless, such effects should be investigated thoroughly in order to support firm conclusions about the risk of unanticipated long-term negative effects of maternal FA supplementation in humans.


Assuntos
Suplementos Nutricionais/efeitos adversos , Ácido Fólico/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Adulto , Animais , Criança , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/uso terapêutico , Humanos , Masculino , Gravidez
20.
Br J Nutr ; 108(5): 852-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22136740

RESUMO

Environmental exposures throughout the life course, including nutrition, may induce phenotypic and epigenetic changes. There is limited information about how timing affects the nature of such effects induced by a specific nutritional exposure. We investigated the effect of increased exposure to folic acid before birth or during the juvenile-pubertal period in rats on the epigenetic regulation of glucose homeostasis. Rats were fed either a folic acid-adequate (AF; 1 mg/kg feed) or a folic acid-supplemented (FS; 5 mg/kg feed) diet from conception until delivery and then an AF diet during lactation. Juvenile rats were fed either the AF or the FS diet from weaning for 28 d and then an AF diet. Liver and blood were collected after a 12 h fast between postnatal days 84 and 90. Maternal FS diet increased plasma glucose concentration significantly (P < 0·05) in females, but not in males. Post-weaning FS diet decreased glucose concentration significantly in females, but increased glucose concentration in males. There were no effects of the FS diet on phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in males, while the pattern of expression was related to plasma glucose concentration in females. The FS diet induced specific changes in the methylation of individual CpG in females, but not in males, which were related to the time of exposure. Methylation of CpG - 248 increased the binding of CCAAT-enhancer-binding protein ß to the PEPCK promoter. Together, these findings show that both the period during the life course and sex influence the effect of increased exposure to folic acid on the epigenetic regulation of PEPCK and glucose homeostasis.


Assuntos
Metilação de DNA , Dieta , Ácido Fólico/análise , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Desmame , Animais , Sequência de Bases , Glicemia/análise , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA