Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958758

RESUMO

IL-1R integrates signals from IL-1α and IL-1ß, and it is widely expressed across tissues and immune cell types. While the expression pattern and function of IL-1R within the innate immune system is well studied, its role in adaptive immunity, particularly within the CD8 T cell compartment, remains underexplored. Here, we show that CD8 T cells dynamically upregulate IL-1R1 levels during priming by APCs, which correlates with their proliferation status and the acquisition of an effector phenotype. Notably, this IL-1 sensitivity persists in memory CD8 T cells of both mice and humans, influencing effector cytokine production upon TCR reactivation. Furthermore, our study highlights that antiviral effector and tissue-resident CD8 T cell responses against influenza A virus infection become impaired in the absence of IL-1 signaling. Altogether, these data support the exploitation of IL-1 activity in the context of T cell vaccination strategies and warrant consideration of the impact of clinical IL-1 inhibition on the rollout of T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , Influenza Humana , Humanos , Animais , Camundongos , Imunidade Adaptativa , Interleucina-1 , Antivirais , Camundongos Endogâmicos C57BL
2.
Cell Mol Life Sci ; 76(6): 1201-1214, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30659329

RESUMO

Leptin links body energy stores to high energy demanding processes like reproduction and immunity. Based on leptin's role in autoimmune diseases and cancer, several leptin and leptin receptor (LR) antagonists have been developed, but these intrinsically lead to unwanted weight gain. Here, we report on the uncoupling of leptin's metabolic and immune functions based on the cross talk with the epidermal growth factor receptor (EGFR). We show that both receptors spontaneously interact and, remarkably, that this complex can partially overrule the lack of LR activation by a leptin antagonistic mutein. Moreover, this leptin mutant induces EGFR phosphorylation comparable to wild-type leptin. Exploiting this non-canonical leptin signalling pathway, we identified a camelid single-domain antibody that selectively inhibits this LR-EGFR cross talk without interfering with homotypic LR signalling. Administration in vivo showed that this single-domain antibody did not interfere with leptin's metabolic functions, but could reverse the leptin-driven protection against starvation-induced thymic and splenic atrophy. These findings offer new opportunities for the design and clinical application of selective leptin and LR antagonists that avoid unwanted metabolic side effects.


Assuntos
Leptina/imunologia , Leptina/metabolismo , Receptores para Leptina/antagonistas & inibidores , Receptores para Leptina/metabolismo , Anticorpos de Domínio Único/farmacologia , Animais , Camelídeos Americanos/imunologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Leptina/genética , Ligantes , Camundongos Endogâmicos C57BL , Mutação , Ligação Proteica/efeitos dos fármacos , Receptor Cross-Talk/efeitos dos fármacos , Receptores para Leptina/genética , Transdução de Sinais
3.
Am J Respir Cell Mol Biol ; 55(2): 188-200, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27128821

RESUMO

We have shown that obesity-associated attenuation of murine acute lung injury is driven, in part, by blunted neutrophil chemotaxis, yet differences were noted between the two models of obesity studied. We hypothesized that obesity-associated impairment of multiple neutrophil functions contributes to increased risk for respiratory infection but that such impairments may vary between murine models of obesity. We examined the most commonly used murine obesity models (diet-induced obesity, db/db, CPE(fat/fat), and ob/ob) using a Klebsiella pneumoniae pneumonia model and LPS-induced pneumonitis. Marrow-derived neutrophils from uninjured lean and obese mice were examined for in vitro functional responses. All obesity models showed impaired clearance of K. pneumoniae, but in differing temporal patterns. Failure to contain infection in obese mice was seen in the db/db model at both 24 and 48 hours, yet this defect was only evident at 24 hours in CPE(fat/fat) and ob/ob models, and at 48 hours in diet-induced obesity. LPS-induced airspace neutrophilia was decreased in all models, and associated with blood neutropenia in the ob/ob model but with leukocytosis in the others. Obese mouse neutrophils from all models demonstrated impaired chemotaxis, whereas neutrophil granulocyte colony-stimulating factor-mediated survival, LPS-induced cytokine transcription, and mitogen-activated protein kinase and signal transducer and activator of transcription 3 activation in response to LPS and granulocyte colony-stimulating factor, respectively, were variably impaired across the four models. Obesity-associated impairment of host response to lung infection is characterized by defects in neutrophil recruitment and survival. However, critical differences exist between commonly used mouse models of obesity and may reflect variable penetrance of elements of the metabolic syndrome, as well as other factors.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pulmão/microbiologia , Neutrófilos/patologia , Obesidade/imunologia , Obesidade/microbiologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Ligante Fas/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Obesidade/complicações , Obesidade/patologia , Pneumonia/complicações , Pneumonia/microbiologia , Pneumonia/patologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
Crit Care Med ; 42(2): e143-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24231757

RESUMO

OBJECTIVES: One of the hallmarks of severe pneumonia and associated acute lung injury is neutrophil recruitment to the lung. Leptin is thought to be up-regulated in the lung following injury and to exert diverse effects on leukocytes, influencing both chemotaxis and survival. We hypothesized that pulmonary leptin contributes directly to the development of pulmonary neutrophilia during pneumonia and acute lung injury. DESIGN: Controlled human and murine in vivo and ex vivo experimental studies. SETTING: Research laboratory of a university hospital. SUBJECTS: Healthy human volunteers and subjects hospitalized with bacterial and H1N1 pneumonia. C57Bl/6 and db/db mice were also used. INTERVENTIONS: Lung samples from patients and mice with either bacterial or H1N1 pneumonia and associated acute lung injury were immunostained for leptin. Human bronchoalveolar lavage samples obtained after lipopolysaccharide-induced lung injury were assayed for leptin. C57Bl/6 mice were examined after oropharyngeal aspiration of recombinant leptin alone or in combination with Escherichia coli- or Klebsiella pneumoniae-induced pneumonia. Leptin-resistant (db/db) mice were also examined using the E. coli model. Bronchoalveolar lavage neutrophilia and cytokine levels were measured. Leptin-induced chemotaxis was examined in human blood- and murine marrow-derived neutrophils in vitro. MEASUREMENTS AND MAIN RESULTS: Injured human and murine lung tissue showed leptin induction compared to normal lung, as did human bronchoalveolar lavage following lipopolysaccharide instillation. Bronchoalveolar lavage neutrophilia in uninjured and infected mice was increased and lung bacterial load decreased by airway leptin administration, whereas bronchoalveolar lavage neutrophilia in infected leptin-resistant mice was decreased. In sterile lung injury by lipopolysaccharide, leptin also appeared to decrease airspace neutrophil apoptosis. Both human and murine neutrophils migrated toward leptin in vitro, and this required intact signaling through the Janus Kinase 2/phosphatidylinositol-4,5-bisphosphate 3-kinase pathway. CONCLUSIONS: We demonstrate that pulmonary leptin is induced in injured human and murine lungs and that this cytokine is effective in driving alveolar airspace neutrophilia. This action appears to be caused by direct effects of leptin on neutrophils.


Assuntos
Lesão Pulmonar Aguda/etiologia , Leptina/fisiologia , Transtornos Leucocíticos/etiologia , Infiltração de Neutrófilos , Neutrófilos , Pneumonia Bacteriana/etiologia , Pneumonia Viral/etiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Pulm Pharmacol Ther ; 26(4): 405-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23084986

RESUMO

Mounting evidence suggests that obesity and the metabolic syndrome have significant but often divergent effects on the innate immune system. These effects have been best established in monocytes and macrophages, particularly as a consequence of the hypercholesterolemic state. We have recently described defects in neutrophil function in the setting of both obesity and hypercholesterolemia, and hypothesized that exposure to elevated levels of lipoproteins, particularly LDL its oxidized forms, contributed to these defects. As a model of chronic cholesterol exposure, we examined functional responses of bone marrow neutrophils isolated from non-obese mice with diet-induced hypercholesterolemia compared to normal cholesterol controls. Chemotaxis, calcium flux, CD11b display, and F-actin polymerization were assayed in response to several chemoattractants, while neutrophil cytokine transcriptional response was determined to LPS. Following this, the acute effects of isolated LDL and its oxidized forms on normal neutrophils were assayed using the same functional assays. We found that neutrophils from non-obese hypercholesterolemic mice had blunted chemotaxis, altered calcium flux, and normal to augmented CD11b display with prolonged actin polymerization in response to stimuli. In response to acute exposure to lipoproteins, neutrophils showed chemotaxis to LDL which increased with the degree of LDL oxidation. Paradoxically, LDL oxidation yielded the opposite effect on LDL-induced CD11b display and actin polymerization, and both native and oxidized LDL were found to induce neutrophil transcription of the monocyte chemoattractant MCP-1. Together these findings suggest that chronic hypercholesterolemia impairs neutrophil functional responses, and these defects may be in part due to protracted signaling responses to LDL and its oxidized forms.


Assuntos
Hipercolesterolemia/fisiopatologia , Lipoproteínas LDL/metabolismo , Neutrófilos/metabolismo , Actinas/metabolismo , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxia , Lipoproteínas LDL/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Oxirredução , Polimerização
6.
Am J Respir Cell Mol Biol ; 47(1): 120-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22427537

RESUMO

Although obesity is implicated in numerous health complications leading to increased mortality, the relationship between obesity and outcomes for critically ill patients appears paradoxical. Recent studies have reported better outcomes and lower levels of inflammatory cytokines in obese patients with acute lung injury (ALI)/acute respiratory distress syndrome, suggesting that obesity may ameliorate the effects of this disease. We investigated the effects of obesity in leptin-resistant db/db obese and diet-induced obese mice using an inhaled LPS model of ALI. Obesity-associated effects on neutrophil chemoattractant response were examined in bone marrow neutrophils using chemotaxis and adoptive transfer; neutrophil surface levels of chemokine receptor CXCR2 were determined by flow cytometry. Airspace neutrophilia, capillary leak, and plasma IL-6 were all decreased in obese relative to lean mice in established lung injury (24 h). No difference in airspace inflammatory cytokine levels was found between obese and lean mice in both obesity models during the early phase of neutrophil recruitment (2-6 h), but early airspace neutrophilia was reduced in db/db obese mice. Neutrophils from uninjured obese mice demonstrated diminished chemotaxis to the chemokine keratinocyte cytokine compared with lean control mice, and adoptive transfer of obese mouse neutrophils into injured lean mice revealed a defect in airspace migration of these cells. Possibly contributing to this defect, neutrophil CXCR2 expression was significantly lower in obese db/db mice, and a similar but nonsignificant decrease was seen in diet-induced obese mice. ALI is attenuated in obese mice, and this blunted response is in part attributable to an obesity-associated abnormal neutrophil chemoattractant response.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Neutrófilos/imunologia , Obesidade/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Interleucina-6/sangue , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Infiltração de Neutrófilos , Obesidade/metabolismo , Receptores de Interleucina-8B/biossíntese
7.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34772757

RESUMO

BACKGROUND: Clinical success of therapeutic cancer vaccines depends on the ability to mount strong and durable antitumor T cell responses. To achieve this, potent cellular adjuvants are highly needed. Interleukin-1ß (IL-1ß) acts on CD8+ T cells and promotes their expansion and effector differentiation, but toxicity and undesired tumor-promoting side effects hamper efficient clinical application of this cytokine. METHODS: This 'cytokine problem' can be solved by use of AcTakines (Activity-on-Target cytokines), which represent fusions between low-activity cytokine mutants and cell type-specific single-domain antibodies. AcTakines deliver cytokine activity to a priori selected cell types and as such evade toxicity and unwanted off-target side effects. Here, we employ subcutaneous melanoma and lung carcinoma models to evaluate the antitumor effects of AcTakines. RESULTS: In this work, we use an IL-1ß-based AcTakine to drive proliferation and effector functionality of antitumor CD8+ T cells without inducing measurable toxicity. AcTakine treatment enhances diversity of the T cell receptor repertoire and empowers adoptive T cell transfer. Combination treatment with a neovasculature-targeted tumor necrosis factor (TNF) AcTakine mediates full tumor eradication and establishes immunological memory that protects against secondary tumor challenge. Interferon-γ was found to empower this AcTakine synergy by sensitizing the tumor microenvironment to TNF. CONCLUSIONS: Our data illustrate that anticancer cellular immunity can be safely promoted with an IL-1ß-based AcTakine, which synergizes with other immunotherapies for efficient tumor destruction.


Assuntos
Imunoterapia/métodos , Interleucina-1/metabolismo , Neoplasias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos
8.
NPJ Vaccines ; 5(1): 64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714571

RESUMO

Annual administration and reformulation of influenza vaccines is required for protection against seasonal infections. However, the induction of strong and long-lasting T cells is critical to reach broad and potentially lifelong antiviral immunity. The NLRP3 inflammasome and its product interleukin-1ß (IL-1ß) are pivotal mediators of cellular immune responses to influenza, yet, overactivation of these systems leads to side effects, which hamper clinical applications. Here, we present a bypass around these toxicities by targeting the activity of IL-1ß to CD8+ T cells. Using this approach, we demonstrate safe inclusion of IL-1ß as an adjuvant in vaccination strategies, leading to full protection of mice against a high influenza virus challenge dose by raising potent T cell responses. In conclusion, this paper proposes a class of IL-1ß-based vaccine adjuvants and also provides further insight in the mechanics of cellular immune responses driven by IL-1ß.

9.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135304

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Removal of excess cholesterol from the plasma membrane of inflammatory cells helps reduce their activation. The secreted apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells to the plasma lipoprotein HDL. Here, we find that AIBP was expressed in inflammatory cells in the human lung and was secreted into the bronchoalveolar space in mice subjected to inhalation of LPS. AIBP bound surfactant protein B and increased cholesterol efflux from alveolar macrophages to calfactant, a therapeutic surfactant formulation. In vitro, AIBP in the presence of surfactant reduced LPS-induced p65, ERK1/2 and p38 phosphorylation, and IL-6 secretion by alveolar macrophages. In vivo, inhalation of AIBP significantly reduced LPS-induced airspace neutrophilia, alveolar capillary leak, and secretion of IL-6. These results suggest that, similar to HDL in plasma, surfactant serves as a cholesterol acceptor in the lung. Furthermore, lung injury increases pulmonary AIBP expression, which likely serves to promote cholesterol efflux to surfactant and reduce inflammation.


Assuntos
Apolipoproteína A-I/metabolismo , Macrófagos Alveolares/imunologia , Pneumonia Bacteriana/imunologia , Racemases e Epimerases/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Animais , Apolipoproteína A-I/imunologia , Linhagem Celular , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/patologia , Surfactantes Pulmonares/imunologia , Surfactantes Pulmonares/metabolismo , Racemases e Epimerases/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Síndrome do Desconforto Respiratório/patologia
10.
Structure ; 24(3): 437-47, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26876098

RESUMO

Members of the Toll-like receptor and interleukin-1 (IL-1) receptor families all signal via Toll/IL-1R (TIR) domain-driven assemblies with adaptors such as MyD88. We here combine the mammalian two-hybrid system MAPPIT and saturation mutagenesis to complement and extend crystallographic and nuclear magnetic resonance data, and reveal how TIR domains interact. We fully delineate the interaction sites on the MyD88 TIR domain for homo-oligomerization and for interaction with Mal and TLR4. Interactions between three sites drive MyD88 homo-oligomerization. The BB-loop interacts with the αE-helix, explaining how BB-loop mimetics inhibit MyD88 signaling. The αC'-helix interacts symmetrically. The MyD88 TIR domains thus assemble into a left-handed helix, compatible with the Myddosome death domain crystal structure. This assembly explains activation of MyD88 by Mal and by an oncogenic mutation, and regulation by phosphorylation. These findings provide a paradigm for the interaction of mammalian TIR domains.


Assuntos
Mutação , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor 4 Toll-Like/metabolismo
11.
JCI Insight ; 1(8)2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27347561

RESUMO

We have previously reported that obesity attenuates pulmonary inflammation in both patients with acute respiratory distress syndrome (ARDS) and in mouse models of the disease. We hypothesized that obesity-associated hyperleptinemia, and not body mass per se, drives attenuation of the pulmonary inflammatory response and that this e_ect could also impair the host response to pneumonia. We examined the correlation between circulating leptin levels and risk, severity, and outcome of pneumonia in 2 patient cohorts (NHANES III and ARDSNet-ALVEOLI) and in mouse models of diet-induced obesity and lean hyperleptinemia. Plasma leptin levels in ambulatory subjects (NHANES) correlated positively with annual risk of respiratory infection independent of BMI. In patients with severe pneumonia resulting in ARDS (ARDSNet-ALVEOLI), plasma leptin levels were found to correlate positively with subsequent mortality. In obese mice with pneumonia, plasma leptin levels were associated with pneumonia severity, and in obese mice with sterile lung injury, leptin levels were inversely related to bronchoalveolar lavage neutrophilia, as well as to plasma IL-6 and G-CSF levels. These results were recapitulated in lean mice with experimentally induced hyperleptinemia. Our findings suggest that the association between obesity and elevated risk of pulmonary infection may be driven by hyperleptinemia.

12.
Mol Cell Biol ; 33(11): 2302-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23530063

RESUMO

Mitochondria are the main engine that generates ATP through oxidative phosphorylation within the respiratory chain. Mitochondrial respiration is regulated according to the metabolic needs of cells and can be modulated in response to metabolic changes. Little is known about the mechanisms that regulate this process. Here, we identify MCJ/DnaJC15 as a distinct cochaperone that localizes at the mitochondrial inner membrane, where it interacts preferentially with complex I of the electron transfer chain. We show that MCJ impairs the formation of supercomplexes and functions as a negative regulator of the respiratory chain. The loss of MCJ leads to increased complex I activity, mitochondrial membrane potential, and ATP production. Although MCJ is dispensable for mitochondrial function under normal physiological conditions, MCJ deficiency affects the pathophysiology resulting from metabolic alterations. Thus, enhanced mitochondrial respiration in the absence of MCJ prevents the pathological accumulation of lipids in the liver in response to both fasting and a high-cholesterol diet. Impaired expression or loss of MCJ expression may therefore result in a "rapid" metabolism that mitigates the consequences of metabolic disorders.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP40/genética , Metabolismo dos Lipídeos/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular/genética , Colesterol/efeitos adversos , Dieta , Complexo I de Transporte de Elétrons/genética , Fígado Gorduroso/genética , Feminino , Regulação da Expressão Gênica , Humanos , Membranas Intracelulares/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA