Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 33(41): 16072-87, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107941

RESUMO

Amyloid-ß (Aß), major constituent of senile plaques in Alzheimer's disease (AD), is generated by proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretase. Several lipids, especially cholesterol, are associated with AD. Phytosterols are naturally occurring cholesterol plant equivalents, recently been shown to cross the blood-brain-barrier accumulating in brain. Here, we investigated the effect of the most nutritional prevalent phytosterols and cholesterol on APP processing. In general, phytosterols are less amyloidogenic than cholesterol. However, only one phytosterol, stigmasterol, reduced Aß generation by (1) directly decreasing ß-secretase activity, (2) reducing expression of all γ-secretase components, (3) reducing cholesterol and presenilin distribution in lipid rafts implicated in amyloidogenic APP cleavage, and by (4) decreasing BACE1 internalization to endosomal compartments, involved in APP ß-secretase cleavage. Mice fed with stigmasterol-enriched diets confirmed protective effects in vivo, suggesting that dietary intake of phytosterol blends mainly containing stigmasterol might be beneficial in preventing AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Fitosteróis/farmacologia , Animais , Western Blotting , Química Encefálica , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Ionização de Chama , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fitosteróis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estigmasterol/farmacologia
2.
J Biol Chem ; 286(16): 14028-39, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21324907

RESUMO

Alzheimer disease is characterized by accumulation of the ß-amyloid peptide (Aß) generated by ß- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing ß- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aß release. DHA has a typical pleiotropic effect; DHA-mediated Aß reduction is not the consequence of a single major mechanism but is the result of combined multiple effects.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/metabolismo , Ração Animal , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Presenilina-1/biossíntese , Risco
3.
ScientificWorldJournal ; 2012: 141240, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22547976

RESUMO

Lipids play an important role as risk or protective factors in Alzheimer's disease (AD). Previously it has been shown that plasmalogens, the major brain phospholipids, are altered in AD. However, it remained unclear whether plasmalogens themselves are able to modulate amyloid precursor protein (APP) processing or if the reduced plasmalogen level is a consequence of AD. Here we identify the plasmalogens which are altered in human AD postmortem brains and investigate their impact on APP processing resulting in Aß production. All tested plasmalogen species showed a reduction in γ-secretase activity whereas ß- and α-secretase activity mainly remained unchanged. Plasmalogens directly affected γ-secretase activity, protein and RNA level of the secretases were unaffected, pointing towards a direct influence of plasmalogens on γ-secretase activity. Plasmalogens were also able to decrease γ-secretase activity in human postmortem AD brains emphasizing the impact of plasmalogens in AD. In summary our findings show that decreased plasmalogen levels are not only a consequence of AD but that plasmalogens also decrease APP processing by directly affecting γ-secretase activity, resulting in a vicious cycle: Aß reduces plasmalogen levels and reduced plasmalogen levels directly increase γ-secretase activity leading to an even stronger production of Aß peptides.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Plasmalogênios/fisiologia , Processamento de Proteína Pós-Traducional , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Encéfalo/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA/genética
4.
J Neurochem ; 116(5): 916-25, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21214572

RESUMO

Lipids play an important role as risk or protective factors in Alzheimer's disease, which is characterized by amyloid plaques composed of aggregated amyloid-beta. Plasmalogens are major brain lipids and controversially discussed to be altered in Alzheimer's disease (AD) and whether changes in plasmalogens are cause or consequence of AD pathology. Here, we reveal a new physiological function of the amyloid precursor protein (APP) in plasmalogen metabolism. The APP intracellular domain was found in vivo and in vitro to increase the expression of the alkyl-dihydroxyacetonephosphate-synthase (AGPS), a rate limiting enzyme in plasmalogen synthesis. Alterations in APP dependent changes of AGPS expression result in reduced protein and plasmalogen levels. Under the pathological situation of AD, increased amyloid-beta level lead to increased reactive oxidative species production, reduced AGPS protein and plasmalogen level. Accordingly, phosphatidylethanol plasmalogen was decreased in the frontal cortex of AD compared to age matched controls. Our findings elucidate that plasmalogens are decreased as a consequence of AD and regulated by APP processing under physiological conditions.


Assuntos
Alquil e Aril Transferases/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Plasmalogênios/metabolismo , Alquil e Aril Transferases/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Feminino , Fibroblastos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Neuroblastoma , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transfecção
5.
J Nutr Biochem ; 23(10): 1214-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22209004

RESUMO

Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aß) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aß are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Ácidos Graxos trans/efeitos adversos , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/citologia , Placa Amiloide/química , Proteólise
6.
PLoS One ; 7(3): e34095, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470521

RESUMO

Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aß production, are enriched in amyloid plaques and bind amyloid beta (Aß). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aß and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aß to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aß release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aß and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aß production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aß generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aß-GM3 complex and AICD-mediated repression of GD3S transcription.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Gangliosídeos/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Homeostase , Imunoprecipitação , Camundongos , Presenilina-1/antagonistas & inibidores , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/antagonistas & inibidores , Presenilina-2/genética , Presenilina-2/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sialiltransferases/metabolismo
7.
Int J Alzheimers Dis ; 2011: 695413, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660213

RESUMO

Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aß), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-palmitoyl-CoA transferase (SPT). In the present study we identified a new physiological function of APP in sphingolipid synthesis. The APP intracellular domain (AICD) was found to decrease the expression of the SPT subunit SPTLC2, the catalytic subunit of the SPT heterodimer, resulting in that decreased SPT activity. AICD function was dependent on Fe65 and SPTLC2 levels are increased in APP knock-in mice missing a functional AICD domain. SPTLC2 levels are also increased in familial and sporadic AD postmortem brains, suggesting that SPT is involved in AD pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA