Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468626

RESUMO

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
J Exp Zool B Mol Dev Evol ; 340(3): 231-244, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35535962

RESUMO

In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-ß signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.


Assuntos
Testículo , Transcriptoma , Masculino , Animais , Testículo/metabolismo , Adesão Celular , Mamíferos , Imunidade , Estações do Ano
3.
BMC Public Health ; 22(1): 910, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524201

RESUMO

BACKGROUND: The presence of psychosocial risks at work are associated with mental and physical health issues in workers. The study aim was to adapt the COPSOQ-ISTAS21 (Spanish version of the Copenhagen Psychosocial Questionnaire and Union Institute of Work, Environment and Health) Medium-Version to the Peruvian context and to develop a Short-Version of the instrument. METHOD: Cross-sectional design study. The COPSOQ-ISTAS21 Medium Version was used. A confirmatory factor analysis was performed to determine the internal structure of each subdimension (first-order) and dimension (second-order) using the Robust Maximum Likelihood estimation method, and classic fit indices in the literature (CFI, SRMR, RMSEA). Internal consistency was evaluated using the alpha and omega coefficients. A short version was developed based on the items with the highest factorial load and that reduce the factorial complexity. RESULTS: A total of 1707 participants were evaluated. In the confirmatory factor analysis, the goodness-of-fit indices for seventeen of the 20 one-dimensional models (subdimensions) were identified; two subdimensions could not be evaluated because they presented only two items. When conducting a multidimensional analysis, we identified that all second-order models presented optimal goodness-of-fit indices, except "psychological demands at work". Finally, a short version of only 31 items was designed from the items with optimal fit indices. CONCLUSIONS: The new adapted versions of COPSOQ-ISTAS21 were renamed CENSOPAS-COPSOQ (National center of occupational health and environment protection for health -in Spanish- and Copenhagen Psychosocial Questionnaire). The CENSOPAS-COPSOQ is an instrument with sufficient evidence of validity and reliability in its medium and short version, which is why its use is recommended in Peruvian work centers to identify the evaluation and prevention of psychosocial risks at work in Peru.


Assuntos
Psicometria , Estudos Transversais , Humanos , Peru , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários
4.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628286

RESUMO

Cyclin-dependent kinases (CDKs) are a broad family of proteins involved in the cell cycle and transcriptional regulation. In this article, we explore the antitumoral activity of a novel proteolysis-targeting chimera (PROTAC) compound against CDK9. Breast cancer cell lines from different subtypes were used. Transcriptomic mapping of CDKs in breast cancer demonstrated that the expression of CDK9 predicted a detrimental outcome in basal-like tumors (HR = 1.51, CI = 1.08-2.11, p = 0.015) and, particularly, in the luminal B subtype with HER2+ expression (HR = 1.82, CI = 1.17-2.82, p = 0.0069). The novel CDK9 PROTAC, THAL-SNS-032, displayed a profound inhibitory activity in MCF7, T47D, and BT474 cells, with less effect in SKBR3, HCC1569, HCC1954, MDA-MB-231, HS578T, and BT549 cells. The three cell lines with HER2 overexpression and no presence of ER, SKBR3, HCC1569, and HCC1954 displayed an EC50 three times higher compared to ER-positive and dual ER/HER2-positive cell lines. BT474-derived trastuzumab-resistant cell lines displayed a particular sensitivity to THAL-SNS-032. Western blot analyses showed that THAL-SNS-032 caused a decrease in CDK9 levels in BT474, BT474-RH, and BT474-TDM1R cells, and a significant increase in apoptosis. Experiments in animals demonstrated an inverse therapeutic index of THAL-SNS-032, with doses in the nontherapeutic and toxic range. The identified toxicity was mainly due to an on-target off-tumor effect of the compound in the gastrointestinal epithelium. In summary, the potent and efficient antitumoral properties of the CDK9 PROTAC THAL-SNS-032 opens the possibility of using this type of compound in breast cancer only if specifically delivered to cancer cells, particularly in ER/HER2-positive and HER2-resistant tumors.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Proteólise , Receptor ErbB-2/metabolismo
5.
J Cell Mol Med ; 24(5): 3117-3127, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032474

RESUMO

Identification of druggable vulnerabilities is a main objective in triple-negative breast cancer (TNBC), where no curative therapies exist. Gene set enrichment analyses (GSEA) and a pharmacological evaluation using a library of compounds were used to select potential druggable combinations. MTT and studies with semi-solid media were performed to explore the activity of the combinations. TNBC cell lines (MDAMB-231, BT549, HS-578T and HCC3153) and an additional panel of 16 cell lines were used to assess the activity of the two compounds. Flow cytometry experiments and biochemical studies were also performed to explore the mechanism of action. GSEA were performed using several data sets (GSE21422, GSE26910, GSE3744, GSE65194 and GSE42568), and more than 35 compounds against the identified functions were evaluated to discover druggable opportunities. Analyses done with the Chou and Talalay algorithm confirmed the synergy of dasatinib and olaparib. The combination of both agents significantly induced apoptosis in a caspase-dependent manner and revealed a pleotropic effect on cell cycle: Dasatinib arrested cells in G0/G1 and olaparib in G2/M. Dasatinib inhibited pChk1 and induced DNA damage measured by pH2AX, and olaparib increased pH3. Finally, the effect of the combination was also evaluated in a panel of 18 cell lines representative of the most frequent solid tumours, observing a particularly synergism in ovarian cancer. Breast cancer, triple negative, dasatinib, olaparib, screening.


Assuntos
Dasatinibe/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transcriptoma/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Mol Hum Reprod ; 26(6): 389-401, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330263

RESUMO

The identification of new genes involved in sexual development and gonadal function as potential candidates causing male infertility is important for both diagnostic and therapeutic purposes. Deficiency of the onco-miRNA cluster miR-17∼92 has been shown to disrupt spermatogenesis, whereas mutations in its paralog cluster, miR-106b∼25, that is expressed in the same cells, were reported to have no effect on testis development and function. The aim of this work is to determine the role of these two miRNA clusters in spermatogenesis and male fertility. For this, we analyzed miR-106b∼25 and miR-17∼92 single and double mouse mutants and compared them to control mice. We found that miR-106b∼25 knock out testes show reduced size, oligozoospermia and altered spermatogenesis. Transcriptomic analysis showed that multiple molecular pathways are deregulated in these mutant testes. Nevertheless, mutant males conserved normal fertility even when early spermatogenesis and other functions were disrupted. In contrast, miR-17∼92+/-; miR-106b∼25-/- double mutants showed severely disrupted testicular histology and significantly reduced fertility. Our results indicate that miR-106b∼25 and miR-17∼92 ensure accurate gene expression levels in the adult testis, keeping them within the required thresholds. They play a crucial role in testis homeostasis and are required to maintain male fertility. Hence, we have identified new candidate genetic factors to be screened in the molecular diagnosis of human males with reproductive disorders. Finally, considering the well-known oncogenic nature of these two clusters and the fact that patients with reduced fertility are more prone to testicular cancer, our results might also help to elucidate the molecular mechanisms linking both pathologies.


Assuntos
MicroRNAs/metabolismo , Oligospermia/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , MicroRNAs/genética , Oligospermia/genética , Espermatogênese/genética , Espermatogênese/fisiologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
7.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261142

RESUMO

Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Platina/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Invasividade Neoplásica , Platina/farmacologia , Gencitabina
8.
Hum Mol Genet ; 26(18): 3531-3544, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911204

RESUMO

Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases.


Assuntos
Angiotensinogênio/genética , Proteínas/genética , Alanina/genética , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Aminoácidos/genética , Angiotensinogênio/metabolismo , Animais , Sítios de Ligação , Sequência Consenso/genética , Evolução Molecular , Humanos , Mutação , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Filogenia , Polimorfismo Genético , Ligação Proteica , Estabilidade Proteica , Proteínas/metabolismo , Transaminases/genética , Transaminases/metabolismo
9.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671636

RESUMO

Mitochondria are believed to play an important role in shaping the intracellular Ca2+ transients during skeletal muscle contraction. There is discussion about whether mitochondrial matrix Ca2+ dynamics always mirror the cytoplasmic changes and whether this happens in vivo in whole organisms. In this study, we characterized cytosolic and mitochondrial Ca2+ signals during spontaneous skeletal muscle contractions in zebrafish embryos expressing bioluminescent GFP-aequorin (GA, cytoplasm) and mitoGFP-aequorin (mitoGA, trapped in the mitochondrial matrix). The Ca2+ transients measured with GA and mitoGA reflected contractions of the trunk observed by transmitted light. The mitochondrial uncoupler FCCP and the inhibitor of the mitochondrial calcium uniporter (MCU), DS16570511, abolished mitochondrial Ca2+ transients whereas they increased the frequency of cytosolic Ca2+ transients and muscle contractions, confirming the subcellular localization of mitoGA. Mitochondrial Ca2+ dynamics were also determined with mitoGA and were found to follow closely cytoplasmic changes, with a slower decay. Cytoplasmic Ca2+ kinetics and propagation along the trunk and tail were characterized with GA and with the genetically encoded fluorescent Ca2+ indicator, Twitch-4. Although fluorescence provided a better spatio-temporal resolution, GA was able to resolve the same kinetic parameters while allowing continuous measurements for hours.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/citologia , Peixe-Zebra/embriologia , Equorina/metabolismo , Animais , Sinalização do Cálcio , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Peixe-Zebra/metabolismo
10.
Int J Mol Sci ; 16(6): 12601-15, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26053394

RESUMO

Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA) to direct E gene expression (pCEA-E) towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.


Assuntos
Bacteriófagos/metabolismo , Antígeno Carcinoembrionário/genética , Neoplasias do Colo/terapia , Terapia Genética/métodos , Proteínas Virais/metabolismo , Animais , Bacteriófagos/genética , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/virologia , Células HCT116 , Células HT29 , Humanos , Camundongos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética
11.
J Exp Zool B Mol Dev Evol ; 322(5): 304-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24895181

RESUMO

Males of all seasonal breeding mammals undergo circannual periods of testis involution resulting in almost complete ablation of the germinative epithelium. We performed a morphometric, histological, hormonal, and gene-expression study of the testes from winter and summer males of the greater white-toothed shrew, Crocidura russula, in populations of the southeastern Iberian Peninsula. Unexpectedly, we found no significant differences between the two study groups. Surprisingly, female data confirmed a non-breeding period in the summer, evidencing that males retain full testis function even when most females are not receptive. This situation, which has not been described before, does not occur in northern populations of the same species where, in addition, the reproductive cycle is inverted with respect to those in the south, as the non-breeding period occurs in winter instead in summer. Considering that the non-reproductive period shortens at lower latitude locations, we hypothesize that in southern populations the non-breeding period is short enough to make testis regression inefficient in terms of energy savings, because: (1) testes of C. russula are very small, a condition derived from their monogamy that implies low investment in spermatogenesis; and (2) the spermatogenic cycle of this species is slow and long. The inverted seasonal breeding cycle and the lack of seasonal testis regression described here are new adaptive processes that deserve further research, and provide evidence that the genetic and hormonal mechanisms controlling reproduction timing in mammals are more plastic and versatile than initially suspected.


Assuntos
Musaranhos/fisiologia , Espermatogênese/fisiologia , Testículo/anatomia & histologia , Testículo/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Masculino , Reprodução/fisiologia , Estações do Ano , Espanha , Testosterona/sangue
12.
J Physiol Biochem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727993

RESUMO

Obesity constitutes a global health epidemic which worsens the main leading death causes such as type 2 diabetes, cardiovascular diseases, and cancer. Changes in the metabolism in patients with obesity frequently lead to insulin resistance, along with hyperglycemia, dyslipidemia and low-grade inflammation, favoring a more aggressive tumor microenvironment. One of the hallmarks of cancer is the reprogramming of the energy metabolism, in which tumor cells change oxidative phosphorylation to aerobic glycolysis or "Warburg effect". Aerobic glycolysis is faster than oxidative phosphorylation, but less efficient in terms of ATP production. To obtain sufficient ATP, tumor cells increase glucose uptake by the glucose transporters of the GLUT/SLC2 family. The human glucose transporter GLUT12 was isolated from the breast cancer cell line MCF7. It is expressed in adipose tissue, skeletal muscle and small intestine, where insulin promotes its translocation to the plasma membrane. Moreover, GLUT12 over-expression in mice increases the whole-body insulin sensitivity. Thus, GLUT12 has been proposed as a second insulin-responsive glucose transporter. In obesity, GLUT12 is downregulated and does not respond to insulin. In contrast, GLUT12 is overexpressed in human solid tumors such as breast, prostate, gastric, liver and colon. High glucose concentration, insulin, and hypoxia upregulate GLUT12 both in adipocytes and tumor cells. Inhibition of GLUT12 mediated Warburg effect suppresses proliferation, migration, and invasion of cancer cells and xenografted tumors. This review summarizes the up-to-date information about GLUT12 physiological role and its implication in obesity and cancer, opening new perspectives to consider this transporter as a therapeutic target.

13.
Nat Commun ; 15(1): 3809, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714644

RESUMO

Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.


Assuntos
Diferenciação Celular , MicroRNAs , Ovário , Células de Sertoli , Processos de Determinação Sexual , Proteína da Região Y Determinante do Sexo , Testículo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citologia , Camundongos , Ovário/metabolismo , Testículo/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Diferenciação Celular/genética , Processos de Determinação Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Diferenciação Sexual/genética , Transtornos do Desenvolvimento Sexual/genética , Gônadas/metabolismo
14.
Biol Reprod ; 89(4): 78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946534

RESUMO

In mammals, sex differentiation depends on gonad development, which is controlled by two groups of sex-determining genes that promote one gonadal sex and antagonize the opposite one. SOX9 plays a key role during testis development in all studied vertebrates, whereas it is kept inactive in the XX gonad at the critical time of sex determination, otherwise, ovary-to-testis gonadal sex reversal occurs. However, molecular mechanisms underlying repression of Sox9 at the beginning of ovarian development, as well as other important aspects of gonad organogenesis, remain largely unknown. Because there is indirect evidence that micro-RNAs (miRNA) are necessary for testicular function, the possible involvement of miRNAs in mammalian sex determination deserved further research. Using microarray technology, we have identified 22 miRNAs showing sex-specific expression in the developing gonads during the critical period of sex determination. Bioinformatics analyses led to the identification of miR-124 as the candidate gene for ovarian development. We knocked down or overexpressed miR-124 in primary gonadal cell cultures and observed that miR-124 is sufficient to induce the repression of both SOX9 translation and transcription in ovarian cells. Our results provide the first evidence of the involvement of a miRNA in the regulation of the gene controlling gonad development and sex determination. The miRNA microarray data reported here will help promote further research in this field, to unravel the role of other miRNAs in the genetic control of mammalian sex determination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Oogênese , Ovário/metabolismo , Fatores de Transcrição SOX9/antagonistas & inibidores , Diferenciação Sexual , Animais , Animais não Endogâmicos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Biologia Computacional , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Genes Reporter , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/citologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Testículo/citologia , Testículo/metabolismo
15.
Biol Reprod ; 88(4): 101, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23515671

RESUMO

In males of seasonally breeding species, testes undergo a severe involution at the end of the breeding season, with a major volume decrease due to massive germ-cell depletion associated with photoperiod-dependent reduced levels of testosterone and gonadotropins. Although it has been repeatedly suggested that apoptosis is the principal effector of testicular regression in vertebrates, recent studies do not support this hypothesis in some mammals. The purpose of our work is to discover alternative mechanisms of testis regression in these species. In this paper, we have performed a morphological, hormonal, ultrastructural, molecular, and functional study of the mechanism of testicular regression and the role that cell junctions play in the cell-content dynamics of the testis of the Iberian mole, Talpa occidentalis, throughout the seasonal breeding cycle. Desquamation of live, nonapoptotic germ cells has been identified here as a new mechanism for seasonal testis involution in mammals, indicating that testis regression is regulated by modulating the expression and distribution of the cell-adhesion molecules in the seminiferous epithelium. During this process, which is mediated by low intratesticular testosterone levels, Sertoli cells lose their nursing and supporting function, as well as the impermeability of the blood-testis barrier. Our results contradict the current paradigm that apoptosis is the major testis regression effector in vertebrates, as it is clearly not true in all mammals. The new testis regression mechanism described here for the mole could then be generalized to other mammalian species. Available data from some previously studied mammals should be reevaluated.


Assuntos
Células Germinativas/citologia , Toupeiras , Estações do Ano , Testículo/anatomia & histologia , Animais , Contagem de Células , Morte Celular , Regulação para Baixo , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Masculino , Toupeiras/anatomia & histologia , Toupeiras/genética , Toupeiras/metabolismo , Toupeiras/fisiologia , Tamanho do Órgão , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Testículo/citologia , Testículo/metabolismo , Testículo/ultraestrutura , Transcriptoma
16.
Annu Rev Anim Biosci ; 11: 141-162, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130099

RESUMO

Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.


Assuntos
Hyaenidae , Toupeiras , Masculino , Feminino , Animais , Hyaenidae/genética , Esteroides , Genitália , Biologia
17.
Rev Psiquiatr Salud Ment ; 16: 11-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36438714

RESUMO

Introduction: The COVID-19 pandemic has exacerbated health issues in healthcare workers which in turn impacts their quality of life. Objective: This review aimed to (i) analyze the impact of the COVID-19 pandemic on the quality of life of healthcare professionals and (ii) identify the associated factors with quality of life. Materials and methods: We conducted a systematic review using the PRISMA guidelines previously registered in PROSPERO (CRD42021253075). The searched in Web of Science, Scopus, MEDLINE and EMBASE databases included original articles published till May 2021. Results: We found 19 articles and 14,352 professionals in total, the median age ranged from 29 to 42.5 years and 37% of the studies used the WHOQOL-BREF instrument to assess the outcome. The report was heterogeneous, 7 studies described global scores and 9 by domains. Depression, anxiety and stress were commonly reported factors affecting professional's quality of life and this was significantly lower among professionals working with COVID-19 patients compared to their counterparts. Conclusion: COVID-19 frontline workers perceived lower quality of life, which was mainly associated with psychological states such as the aforementioned besides to working conditions like not being previously trained in COVID-19 cases. On the other hand, social support, resilience and active coping could improved their quality of life.


Introducción: La pandemia de COVID-19 ha agravado los problemas de salud del personal sanitario, lo que a su vez repercute en su calidad de vida. Objetivo: Esta revisión tiene como objetivo: (a) Analizar el impacto de la pandemia COVID-19 en la calidad de vida de los profesionales sanitarios y (2) Identificar los factores asociados a su calidad de vida. Materiales y métodos: Se realizó una revisión sistemática utilizando las pautas PRISMA previamente registradas en PROSPERO (CRD42021253075). La búsqueda en las bases de datos Web of Science, Scopus, MEDLINE y EMBASE incluyó artículos originales publicados hasta mayo de 2021. Resultados: Se encontraron 19 artículos y 14.352 profesionales en total, la mediana de edad osciló entre 29 y 42,5 años y el 37% de los estudios utilizaron el instrumento WHOQOL-BREF para evaluar el resultado. El informe fue heterogéneo, 7 estudios describieron puntuaciones globales y 9 por dominios. La depresión, la ansiedad y el estrés fueron los factores comúnmente reportados que afectan a la calidad de vida del profesional, y esta fue significativamente menor entre los profesionales que trabajan con pacientes de COVID-19 en comparación con sus homólogos. Conclusión: Los trabajadores de primera línea de COVID-19 percibieron una menor calidad de vida, que se asoció principalmente a estados psicológicos como los mencionados, además de a condiciones de trabajo como no haber recibido formación previa en casos de COVID-19. Por otro lado, el apoyo social, la resiliencia y el afrontamiento activo mejoraron su calidad de vida.

18.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371501

RESUMO

This study analyses the effects of Maresin 1 (MaR1), a docosahexaenoic acid (DHA)-derived specialized proresolving lipid mediator with anti-inflammatory and insulin-sensitizing actions, on the expression of adipokines, including adiponectin, leptin, dipeptidyl peptidase 4 (DPP-4), cardiotrophin-1 (CT-1), and irisin (FNDC5), both in vitro and in in vivo models of obesity. The in vivo effects of MaR1 (50 µg/kg, 10 days, oral gavage) were evaluated in epididymal adipose tissue (eWAT), liver and muscle of diet-induced obese (DIO) mice. Moreover, two models of human differentiated primary adipocytes were incubated with MaR1 (1 and 10 nM, 24 h) or with a combination of tumor necrosis factor-α (TNF-α, 100 ng/mL) and MaR1 (1-200 nM, 24 h) and the expression and secretion of adipokines were measured in both models. MaR1-treated DIO mice exhibited an increased expression of adiponectin and Ct-1 in eWAT, increased expression of Fndc5 and Ct-1 in muscle and a decreased expression of hepatic Dpp-4. In human differentiated adipocytes, MaR1 increased the expression of ADIPONECTIN, LEPTIN, DPP4, CT-1 and FNDC5. Moreover, MaR1 counteracted the downregulation of ADIPONECTIN and the upregulation of DPP-4 and LEPTIN observed in adipocytes treated with TNF-α. Differential effects for TNF-α and MaR1 on the expression of CT-1 and FNDC5 were observed between both models of human adipocytes. In conclusion, MaR1 reverses the expression of specific adipomyokines and hepatokines altered in obese mice in a tissue-dependent manner. Moreover, MaR1 regulates the basal expression of adipokines in human adipocytes and counteracts the alterations of adipokines expression induced by TNF-α in vitro. These actions could contribute to the metabolic benefits of this lipid mediator.


Assuntos
Ácidos Docosa-Hexaenoicos , Leptina , Animais , Camundongos , Humanos , Leptina/farmacologia , Leptina/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Adipocinas/metabolismo , Camundongos Obesos , Fator de Necrose Tumoral alfa/metabolismo , Adiponectina/metabolismo , Adipócitos/metabolismo , Dieta , Fibronectinas/metabolismo
19.
J Exp Zool B Mol Dev Evol ; 318(3): 170-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22544714

RESUMO

According to the classical paradigm, the vasculature of the embryonic testis is more dense and complex than that of the ovary, but recent studies based on whole-mount detection of Caveolin-1 (CAV1) as an endothelial cell marker, have suggested that the level of ovarian vascularization is higher than previously assumed. However, this new hypothesis has been neither tested using alternative methodology nor investigated in other mammalian species. In this paper, we have studied the vascularization process in the gonads of males and females of two mammalian species, the mouse (Mus musculus) and the Iberian mole (Talpa occidentalis). Our results show that the pattern of testis vascularization is very well conserved among mammals, including both pre- and postnatal stages of development and, at least in the mole, it is conserved irrespectively of whether the testicular tissue is XY or XX. We have shown that CAV1 is present not only in endothelial cells but also in prefollicular oocytes and in an ovarian population of somatic cortical cells. These data clearly establish that: (1) according to the classical hypothesis, the degree of vascularization of the developing ovary is lower than that of the testis, (2) ovarian vascularization is also evolutionarily conserved as it occurs similarly both in moles and in mice, and (3) that the degree of vascular development of the mammalian ovary is age-dependent increasing significatively at puberty. The expression of CAV1 in the ovary of most animal taxa, from nematodes to mammals, strongly suggests a role for this gene in the female meiosis.


Assuntos
Neovascularização Fisiológica , Ovário/irrigação sanguínea , Testículo/irrigação sanguínea , Animais , Feminino , Masculino , Camundongos
20.
J Invest Dermatol ; 142(10): 2613-2622.e6, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398376

RESUMO

The nail organ is a specialized appendage in which several ectodermal tissues coordinately function to sustain nail growth, a process that is coupled to digit regeneration. In this study, we show that the transcription factor Sox9 is expressed in several cell populations in the mouse digit tip. We found a SOX9+ cell population in the nail bed, and genetic lineage tracing showed that this is a transient cell population differentiated from matrix nail stem cells. In the absence of Sox9, nail matrix stem cells fail to differentiate into epithelial nail-bed cells and proliferate, thus expanding distally and following the corneocyte fate, which results in outlandishly large fingernails. In addition, the tip of the underlying terminal phalanx undergoes bone regression. Sox9-lineage tracing also revealed the existence of a continuous cell supply from a Sox9-expressing population residing in the basal layers to the entire hyponychium epidermis. Furthermore, digit-tip regeneration is compromised in Sox9-knockout mice, revealing an essential role for the gene during this process. These results will contribute to understand the cellular and molecular basis of mammalian nail organ homeostasis and disease and digit-tip regeneration and will help to design new treatment strategies for patients with nail diseases or amputation.


Assuntos
Membro Anterior/citologia , Camundongos , Fatores de Transcrição SOX9/metabolismo , Células-Tronco , Animais , Diferenciação Celular , Membro Anterior/crescimento & desenvolvimento , Mamíferos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA