Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155284

RESUMO

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Assuntos
Ácidos/química , Albinismo/etiologia , Canais de Cloreto/genética , Fibroblastos/patologia , Variação Genética , Doenças por Armazenamento dos Lisossomos/etiologia , Lisossomos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Canais de Cloreto/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Oócitos/metabolismo , Xenopus laevis
2.
Mol Ther ; 15(3): 552-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17191073

RESUMO

Recombinant retroviral vectors are indispensable tools for the study of gene function and for therapeutic gene transfer owing to their ability to transfer and stably express foreign genes in target cells. A limitation of these vectors, however, is the difficulty in generating stable vector producer cell (VPC) lines when the vectors encode cytotoxic proteins. We developed a series of Moloney murine leukemia virus-based vectors encoding a reverse transcription-activated transgene. These vectors preclude gene expression in the producer cells, yet allow lines for transgene expression in target cells. The vectors were generated by cloning the gene of interest in reverse orientation either just upstream of the viral 3' long terminal repeat (LTR) or in the U3 region of the 3'LTR. An exogenous promoter was inserted, also in reverse orientation, at the R-U5 border of the viral 5'LTR. Upon transduction of target cells, the inserted promoter is copied to the 3'LTR during reverse transcription of the vector genomic RNA, where it then drives transgene expression. We tested this system using a green fluorescent protein (GFP) gene and the SV40 promoter. Reverse transcription-activated retroviral vectors may allow for the generation of stable retroviral VPC lines encoding cytotoxic or inhibitory genes.


Assuntos
Expressão Gênica/genética , Vetores Genéticos/genética , Retroviridae/genética , Transcrição Reversa/genética , Transgenes/genética , Linhagem Celular , Inativação Gênica , Genes Reporter/genética , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA