Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(46): 8913-8923, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051354

RESUMO

Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/fisiologia , Estimulação Acústica , Animais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tálamo/fisiologia
2.
Hippocampus ; 31(7): 701-716, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33606338

RESUMO

Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.


Assuntos
Córtex Perirrinal , Análise e Desempenho de Tarefas , Animais , Memória de Curto Prazo/fisiologia , Córtex Perirrinal/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos , Roedores
3.
Neurobiol Learn Mem ; 184: 107498, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332068

RESUMO

Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.


Assuntos
Reversão de Aprendizagem , Estimulação do Nervo Vago , Inibidores da Captação Adrenérgica , Animais , Cloridrato de Atomoxetina/farmacologia , Baclofeno/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Agonistas dos Receptores de GABA-B/farmacologia , Masculino , Ratos , Ratos Endogâmicos BN , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia
4.
Cereb Cortex ; 30(5): 2789-2803, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31833551

RESUMO

Deficits in auditory function and cognition are hallmarks of normative aging. Recent evidence suggests that hearing-impaired individuals have greater risks of developing cognitive impairment and dementia compared to people with intact auditory function, although the neurobiological bases underlying these associations are poorly understood. Here, a colony of aging macaques completed a battery of behavioral tests designed to probe frontal and temporal lobe-dependent cognition. Auditory brainstem responses (ABRs) and visual evoked potentials were measured to assess auditory and visual system function. Structural and diffusion magnetic resonance imaging were then performed to evaluate the microstructural condition of multiple white matter tracts associated with cognition. Animals showing higher cognitive function had significantly better auditory processing capacities, and these associations were selectively observed with tasks that primarily depend on temporal lobe brain structures. Tractography analyses revealed that the fractional anisotropy (FA) of the fimbria-fornix and hippocampal commissure were associated with temporal lobe-dependent visual discrimination performance and auditory sensory function. Conversely, FA of frontal cortex-associated white matter was not associated with auditory processing. Visual sensory function was not associated with frontal or temporal lobe FA, nor with behavior. This study demonstrates significant and selective relationships between ABRs, white matter connectivity, and higher-order cognitive ability.


Assuntos
Envelhecimento/fisiologia , Percepção Auditiva/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Animais , Cognição/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Reconhecimento Visual de Modelos/fisiologia
5.
Epilepsia ; 60(5): e52-e57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963545

RESUMO

Cryptogenic temporal lobe epilepsy develops in the absence of identified brain injuries, infections, or structural malformations, and in these cases, an unidentified pre-existing abnormality may initiate febrile seizures, hippocampal sclerosis, and epilepsy. Although a role for GABAergic dysfunction in epilepsy is intuitively obvious, no causal relationship has been established. In this study, hippocampal GABA neurons were targeted for selective elimination to determine whether a focal hippocampal GABAergic defect in an otherwise normal brain can initiate cryptogenic temporal lobe epilepsy with hippocampal sclerosis. We used Stable Substance P-saporin conjugate (SSP-saporin) to target rat hippocampal GABA neurons, which selectively and constitutively express the neurokinin-1 receptors that internalize this neurotoxin. Bilateral and longitudinally extensive intrahippocampal microinjections of SSP-saporin caused no obvious behavioral effects for several days. However, starting ~4 days postinjection, rats exhibited episodes of immobilization, abnormal flurries of "wet-dog" shakes, and brief focal motor seizures characterized by facial automatisms and forepaw clonus. These clinically subtle behaviors stopped after ~4 days. Convulsive status epilepticus did not develop, and no deaths occurred. Months later, chronically implanted rats exhibited spontaneous focal motor seizures and extreme hippocampal sclerosis. These data suggest that hippocampal GABAergic dysfunction is epileptogenic and can produce the defining features of cryptogenic temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Saporinas/toxicidade , Substância P/análogos & derivados , Animais , Doença Crônica , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Hipocampo/química , Hipocampo/patologia , Masculino , Parvalbuminas/análise , Ratos , Ratos Sprague-Dawley , Saporinas/farmacologia , Esclerose , Substância P/farmacologia , Substância P/toxicidade , Ácido gama-Aminobutírico/fisiologia
6.
J Int Neuropsychol Soc ; 25(7): 688-698, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31111810

RESUMO

OBJECTIVE: Detection of cognitive impairment suggestive of risk for Alzheimer's disease (AD) progression is crucial to the prevention of incipient dementia. This study was performed to determine if performance on a novel object discrimination task improved identification of earlier deficits in older adults at risk for AD. METHOD: In total, 135 participants from the 1Florida Alzheimer's Disease Research Center [cognitively normal (CN), Pre-mild cognitive impairment (PreMCI), amnestic mild cognitive impairment (aMCI), and dementia] completed a test of object discrimination and traditional memory measures in the context of a larger neuropsychological and clinical evaluation. RESULTS: The Object Recognition and Discrimination Task (ORDT) revealed significant differences between the PreMCI, aMCI, and dementia groups versus CN individuals. Moreover, relative risk of being classified as PreMCI rather than CN increased as an inverse function of ORDT score. DISCUSSION: Overall, the obtained results suggest that a novel object discrimination task improves the detection of very early AD-related cognitive impairment, increasing the window for therapeutic intervention. (JINS, 2019, 25, 688-698).


Assuntos
Doença de Alzheimer/diagnóstico , Amnésia/diagnóstico , Disfunção Cognitiva/diagnóstico , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Idoso , Doença de Alzheimer/fisiopatologia , Amnésia/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Discriminação Psicológica/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Prognóstico
7.
J Neurosci ; 37(37): 8965-8974, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821661

RESUMO

The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.


Assuntos
Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Perirrinal/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Conectoma , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Neurônios/classificação , Neurônios/citologia , Ratos , Ratos Endogâmicos F344 , Transmissão Sináptica/fisiologia
8.
J Neurosci ; 36(15): 4218-30, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076421

RESUMO

The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT: We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single-neuron activity and propagation of theta through the hippocampus. This work is significant because it will encourage others to consider the nonlinear nature of the nervous system and higher-order spectral analyses when examining oscillatory interactions.


Assuntos
Hipocampo/fisiologia , Movimento/fisiologia , Ritmo Teta/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Interneurônios/fisiologia , Masculino , Modelos Neurológicos , Dinâmica não Linear , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos F344
9.
Hippocampus ; 27(7): 759-776, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342259

RESUMO

The ability to accurately remember distinct episodes is supported by high-level sensory discrimination. Performance on mnemonic similarity tasks, which test high-level discrimination, declines with advancing age in humans and these deficits have been linked to altered activity in hippocampal CA3 and dentate gyrus. Lesion studies in animal models, however, point to the perirhinal cortex as a brain region critical for sensory discriminations that serve memory. Reconciliation of the contributions of different regions within the cortical-hippocampal circuit requires the development of a discrimination paradigm comparable to the human mnemonic similarity task that can be used in rodents. In the present experiments, young and aged rats were cross-characterized on a spatial water maze task and two variants of an object discrimination task: one in which rats incrementally learned which object of a pair was rewarded and different pairs varied in their similarity (Experiment 1), and a second in which rats were tested on their ability to discriminate a learned target object from multiple lure objects with an increasing degree of feature overlap (Experiment 2). In Experiment 1, aged rats required more training than young to correctly discriminate between similar objects. Comparably, in Experiment 2, aged rats were impaired in discriminating a target object from lures when the pair shared more features. Discrimination deficits across experiments were correlated within individual aged rats, though, for the cohort tested, aged rats were not impaired overall in spatial learning and memory. This could suggest discrimination deficits emerging with age precede declines in spatial or episodic memory, an observation that has been made in humans. Findings of robust impairments in object discrimination abilities in the aged rats parallel results from human studies, supporting use of the developed tasks for mechanistic investigation of cortical-hippocampal circuit dysfunction in aging and disease.


Assuntos
Envelhecimento , Aprendizagem por Discriminação/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Episódica , Animais , Discriminação Psicológica , Humanos , Ratos
10.
Neurobiol Learn Mem ; 137: 36-47, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27815215

RESUMO

The ability to use information from the physical world to update behavioral strategies is critical for survival across species. The prefrontal cortex (PFC) supports behavioral flexibility; however, exactly how this brain structure interacts with sensory association cortical areas to facilitate the adaptation of response selection remains unknown. Given the role of the perirhinal cortex (PER) in higher-order perception and associative memory, the current study evaluated whether PFC-PER circuits are critical for the ability to perform biconditional object discriminations when the rule for selecting the rewarded object shifted depending on the animal's spatial location in a 2-arm maze. Following acquisition to criterion performance on an object-place paired association task, pharmacological blockade of communication between the PFC and PER significantly disrupted performance. Specifically, the PFC-PER disconnection caused rats to regress to a response bias of selecting an object on a particular side regardless of its identity. Importantly, the PFC-PER disconnection did not interfere with the capacity to perform object-only or location-only discriminations, which do not require the animal to update a response rule across trials. These findings are consistent with a critical role for PFC-PER circuits in rule shifting and the effective updating of a response rule across spatial locations.


Assuntos
Aprendizagem por Associação/fisiologia , Função Executiva/fisiologia , Córtex Perirrinal/fisiologia , Córtex Pré-Frontal/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Córtex Perirrinal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Aprendizagem Espacial/efeitos dos fármacos
11.
Learn Mem ; 23(7): 339-48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27317194

RESUMO

Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats' abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus.


Assuntos
Envelhecimento , Discriminação Psicológica , Memória Espacial , Acetilcolina/fisiologia , Animais , Inibidores da Colinesterase/administração & dosagem , Donepezila , Indanos/administração & dosagem , Masculino , Aprendizagem em Labirinto , Piperidinas/administração & dosagem , Ratos Endogâmicos F344
12.
J Neurosci ; 34(45): 15022-31, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378167

RESUMO

During movement, there is a transition of activity across the population, such that place-field centers ahead of the rat are sequentially activated in the order that they will be encountered. Although the mechanisms responsible for this sequence updating are unknown, two classes of models can be considered. The first class involves head-direction information for activating neurons in the order that their place fields will be traversed. An alternative model contends that motion and turn-related information from the posterior parietal cortex shift the subset of active hippocampal cells across the population. To explicitly test these two models, rodents were trained to run backward on a linear track, placing movement in opposition with head orientation. Although head-direction did not change between running conditions, place-field activity remapped and there was an increase in place-field size during backward running compared with forward. The population activity, however, could still be used to reconstruct the location of the rat accurately. Moreover, theta phase precession was maintained in both running conditions, indicating preservation of place-field sequences on short-time scales. The observation that sequence encoding persists even when the animal is orientated away from the direction of movement favors the concept that posterior parietal cortical mechanisms may be partially responsible for updating hippocampal activity patterns.


Assuntos
Movimentos da Cabeça , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Caminhada , Animais , Ondas Encefálicas , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Orientação , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos F344
13.
J Neurosci ; 34(2): 467-80, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403147

RESUMO

The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.


Assuntos
Envelhecimento/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Eletrofisiologia , Masculino , Ratos , Ratos Endogâmicos F344
14.
J Neurosci ; 34(30): 9905-16, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057193

RESUMO

The orbitofrontal cortex (OFC) and amygdala are both necessary for decisions based on expected outcomes. Although behavioral and imaging data suggest that these brain regions are affected by advanced age, the extent to which aging alters appetitive processes coordinated by the OFC and the amygdala is unknown. In the current experiment, young and aged bonnet macaques were trained on OFC- and amygdala-dependent tasks that test the degree to which response selection is guided by reward value and can be adapted when expected outcomes change. To assess whether the structural integrity of these regions varies with levels of performance on reward devaluation and object reversal tasks, volumes of areas 11/13 and 14 of the OFC, central/medial (CM), and basolateral (BL) nuclei of the amygdala were determined from high-resolution anatomical MRIs. With age, there were significant reductions in OFC, but not CM and BL, volume. Moreover, the aged monkeys showed impairments in the ability to associate an object with a higher value reward, and to reverse a previously learned association. Interestingly, greater OFC volume of area 11/13, but not 14, was significantly correlated with an animal's ability to anticipate the reward outcome associated with an object, and smaller BL volume was predictive of an animal's tendency to choose a higher value reward, but volume of neither region correlated with reversal learning. Together, these data indicate that OFC volume has an impact on monkeys' ability to guide choice behavior based on reward value but does not impact ability to reverse a previously learned association.


Assuntos
Tonsila do Cerebelo/fisiologia , Lobo Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Fatores Etários , Animais , Feminino , Previsões , Macaca radiata , Tamanho do Órgão/fisiologia
15.
J Neurosci ; 33(8): 3424-33, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426670

RESUMO

The CA1 region of the hippocampus receives distinct patterns of afferent input to distal (near subiculum) and proximal (near CA2) zones. Specifically, distal CA1 receives a direct projection from cells in the lateral entorhinal cortex that are sensitive to objects, whereas proximal CA1 is innervated by cells in the medial entorhinal cortex that are responsive to space. This suggests that neurons in different areas along the proximodistal axis of CA1 of the hippocampus will be functionally distinct. The current experiment investigated this possibility by monitoring behavior-induced cell activity across the CA1 axis using Arc mRNA imaging methods that compared adult and old rats in two conditions: (1) exploration of the same environment containing the same objects twice (AA) or (2) exploration of two different environments that contained identical objects (AB). The hypothesis was that CA1 place cells should show field remapping in the condition in which environments were changed, but the extent of remapping was expected to differ between proximal and distal regions and between age groups. In fact, neurons in the proximal region of CA1 in adult animals exhibited a greater degree of remapping than did distal CA1 cells when the environment changed, suggesting that cells receiving input from the medial entorhinal cortex are more sensitive to spatial context. However, in old rats, there were no differences in remapping across the proximodistal CA1 axis. Together, these data suggest that distal and proximal CA1 may be functionally distinct and differentially vulnerable to normative aging processes.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Proteínas do Citoesqueleto/genética , Comportamento Exploratório/fisiologia , Genes Precoces/fisiologia , Proteínas do Tecido Nervoso/genética , Transcrição Gênica/fisiologia , Envelhecimento/genética , Animais , Mapeamento Encefálico/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Imagem Molecular/métodos , RNA Mensageiro/biossíntese , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
16.
Cereb Cortex ; 23(9): 2225-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22806267

RESUMO

Previous work suggests that activation patterns of neurons in superficial layers of the neocortex are more sensitive to spatial context than activation patterns in deep cortical layers. A possible source of this laminar difference is the distribution of contextual information to the superficial cortical layers carried by hippocampal efferents that travel through the entorhinal cortex and subiculum. To evaluate the role that the hippocampus plays in determining context sensitivity in superficial cortical layers, behavior-induced expression of the immediate early gene Arc was examined in hippocampus-lesioned and control rats after exposing them to 2 distinct contexts. Contrary to expectations, hippocampal lesions had no observable effect on Arc expression in any neocortical layer relative to controls. Furthermore, another group of intact animals was exposed to the same environment twice, to determine the reliability of Arc-expression patterns across identical contextual and behavioral episodes. Although this condition included no difference in external input between 2 epochs, the significant layer differences in Arc expression still remained. Thus, laminar differences in activation or plasticity patterns are not likely to arise from hippocampal sources or differences in external inputs, but are more likely to be an intrinsic property of the neocortex.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Meio Ambiente , Hipocampo/fisiologia , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Comportamento Animal/fisiologia , Masculino , Lobo Parietal/metabolismo , Ratos
17.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36858827

RESUMO

The hippocampal theta rhythm strongly correlates to awake behavior leading to theories that it represents a cognitive state of the brain. As theta has been observed in other regions of the Papez circuit, it has been theorized that activity propagates in a reentrant manner. These observations complement the energy cascade hypothesis in which large-amplitude, slow-frequency oscillations reflect activity propagating across a large population of neurons. Higher frequency oscillations, such as gamma, are related to the speed with which inhibitory and excitatory neurons interact and distribute activity on the local level. The energy cascade hypothesis suggests that the larger anatomic loops, maintaining theta, drive the smaller loops. As hippocampal theta increases in power with running speed, so does the power and frequency of the gamma rhythm. If theta is propagated through the circuit, it stands to reason that the local field potential (LFP) recorded in other regions would be coupled to the hippocampal theta, with the coupling increasing with running speed. We explored this hypothesis using open-source simultaneous recorded data from the CA1 region of the hippocampus and the anterior dorsal and anterior ventral thalamus. Cross-regional theta coupling increased with running speed. Although the power of the gamma rhythm was lower in the anterior thalamus, there was an increase in the coupling of hippocampal theta to anterior thalamic gamma. Broadly, the data support models of how activity moves across the nervous system, suggesting that the brain uses large-scale volleys of activity to support higher cognitive processes.


Assuntos
Núcleos Anteriores do Tálamo , Corrida , Hipocampo/fisiologia , Ritmo Teta/fisiologia , Corrida/fisiologia , Neurônios/fisiologia
18.
bioRxiv ; 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36824737

RESUMO

Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. The current study used a ketogenic diet (KD) intervention, which reduces the brain’s reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer 1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers. The KD did not lead to any significant changes in CA3 activity. These observations suggest that the KD does not restore neuron activation patterns in aged animals, but rather the availability of ketone bodies in the frontal cortices may permit the engagement of compensatory mechanisms that produce better cognitive outcomes. Significance Statement: This study extends understanding of how a ketogenic diet (KD) intervention may improve cognitive function in older adults. Young and aged rats were given 3 months of a KD or a calorie-match control diet and then expression of the immediate-early genes Arc and Homer 1a were measured to examine neural ensemble dynamics during cognitive testing. The KD diet was associated with increased activation of neurons in the superficial layers of the PL, but there were no changes in CA3. These observations are significant because they suggest that compensatory mechanisms for improving cognition are engaged in the presence of elevated ketone bodies. This metabolic shift away from glycolysis can meet the energetic needs of the frontal cortices when glucose utilization is compromised.

19.
Front Aging Neurosci ; 15: 1274624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155737

RESUMO

Introduction: Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods: The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results: Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion: These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.

20.
Behav Neurosci ; 137(6): 356-363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37326524

RESUMO

Improving cognitive health for older adults requires understanding the neurobiology of age-related cognitive decline and the mechanisms underlying preserved cognition in old age. During spatial learning tasks, aged humans and rodents shift navigation preferences in favor of a stimulus-response learning strategy. This has been hypothesized to result from competitive interactions of the caudate nucleus/dorsal striatum (DS) memory system with the hippocampus (HPC)-dependent spatial/allocentric memory system. In support of this hypothesis, a recent study reported that inactivation of the DS in aged rodents rescued HPC-dependent spatial learning on a T-maze (Gardner, Gold, & Korol, 2020). Currently, it is unclear whether a shift from HPC-dependent to DS-dependent behavior also contributes to age-related cognitive decline outside of spatial learning and memory. To test the hypothesis that inactivation of the DS can restore age-related cognitive function outside of spatial behavior, the present study bilaterally inactivated the DS of young (n = 8) and aged (n = 7) rats during visuospatial paired associates learning (PAL). This study found that inactivation of the DS did not alter PAL performance in young or aged rats, but did alter a positive control, DS-dependent spatial navigation task. This observation suggests that elevated DS activity does not play a role in the decline of HPC-dependent PAL performance in aged male rats. Given the persistent tendencies of aged rodents toward DS-dependent learning, it will be worthwhile to explore further the coordination dynamics between the HPC and DS that may contribute to age-related cognitive decline. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Aprendizagem Espacial , Navegação Espacial , Humanos , Ratos , Masculino , Animais , Idoso , Muscimol/farmacologia , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Cognição , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA