Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 299(8): 105012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414152

RESUMO

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.


Assuntos
IMP Desidrogenase , Purinas , Humanos , Regulação Alostérica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Guanosina Trifosfato
2.
J Biol Chem ; 298(1): 101441, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813793

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.


Assuntos
Guanina , IMP Desidrogenase , Células Fotorreceptoras Retinianas Cones , Animais , Guanina/metabolismo , IMP Desidrogenase/metabolismo , Isoenzimas/metabolismo , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra
3.
Biochem Soc Trans ; 50(1): 71-82, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35191957

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH) is a highly conserved enzyme in purine metabolism that is tightly regulated on multiple levels. IMPDH has a critical role in purine biosynthesis, where it regulates flux at the branch point between adenine and guanine nucleotide synthesis, but it also has a role in transcription regulation and other moonlighting functions have been described. Vertebrates have two isoforms, IMPDH1 and IMPDH2, and point mutations in each are linked to human disease. Mutations in IMPDH2 in humans are associated with neurodevelopmental disease, but the effects of mutations at the enzyme level have not yet been characterized. Mutations in IMPDH1 lead to retinal degeneration in humans, and recent studies have characterized how they cause functional defects in regulation. IMPDH1 is expressed as two unique splice variants in the retina, a tissue with very high and specific demands for purine nucleotides. Recent studies have revealed functional differences among splice variants, demonstrating that retinal variants up-regulate guanine nucleotide synthesis by reducing sensitivity to feedback inhibition by downstream products. A better understanding of the role of IMPDH1 in the retina and the characterization of an animal disease model will be critical for determining the molecular mechanism of IMPDH1-associated blindness.


Assuntos
IMP Desidrogenase , Degeneração Retiniana , Animais , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Isoformas de Proteínas/metabolismo , Retina/metabolismo
4.
J Struct Biol ; 198(1): 38-42, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254381

RESUMO

Single particle cryo-electron microscopy (cryoEM) is becoming widely adopted as a tool for structural characterization of biomolecules at near-atomic resolution. Vitrification of the sample to obtain a dense distribution of particles within a single field of view remains a major bottleneck for the success of such experiments. Here, we describe a simple and cost-effective method to increase the density of frozen-hydrated particles on grids with holey carbon support films. It relies on performing multiple rounds of sample application and blotting prior to plunge freezing in liquid ethane. We show that this approach is generally applicable and significantly increases particle density for a range of samples, such as small protein complexes, viruses and filamentous assemblies. The method is versatile, easy to implement, minimizes sample requirements and can enable characterization of samples that would otherwise resist structural studies using single particle cryoEM.


Assuntos
Microscopia Crioeletrônica/métodos , Vitrificação , Microscopia Crioeletrônica/economia , Congelamento , Substâncias Macromoleculares , Métodos , Manejo de Espécimes
5.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323936

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.


Assuntos
Citoesqueleto , Guanosina Trifosfato , IMP Desidrogenase , Retina , Animais , Bovinos , Guanosina Trifosfato/biossíntese , Nucleotídeos , Fosforilação , Retina/enzimologia , IMP Desidrogenase/metabolismo
6.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993700

RESUMO

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.

7.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503272

RESUMO

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.

8.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398374

RESUMO

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.

9.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790411

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.

10.
Nat Struct Mol Biol ; 29(1): 47-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013599

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.


Assuntos
IMP Desidrogenase/genética , Retina/enzimologia , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , IMP Desidrogenase/química , IMP Desidrogenase/ultraestrutura , Modelos Moleculares , NAD/metabolismo , Doenças Retinianas/genética
11.
Nat Struct Mol Biol ; 28(3): 268-277, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589814

RESUMO

Mutations in the E3 ubiquitin ligase RING domains of BRCA1/BARD1 predispose carriers to breast and ovarian cancers. We present the structure of the BRCA1/BARD1 RING heterodimer with the E2 enzyme UbcH5c bound to its cellular target, the nucleosome, along with biochemical data that explain how the complex selectively ubiquitylates lysines 125, 127 and 129 in the flexible C-terminal tail of H2A in a fully human system. The structure reveals that a novel BARD1-histone interface couples to a repositioning of UbcH5c compared to the structurally similar PRC1 E3 ligase Ring1b/Bmi1 that ubiquitylates H2A Lys119 in nucleosomes. This interface is sensitive to both H3 Lys79 methylation status and mutations found in individuals with cancer. Furthermore, NMR reveals an unexpected mode of E3-mediated substrate regulation through modulation of dynamics in the C-terminal tail of H2A. Our findings provide insight into how E3 ligases preferentially target nearby lysine residues in nucleosomes by a steric occlusion and distancing mechanism.


Assuntos
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína BRCA1/ultraestrutura , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Histonas/química , Histonas/ultraestrutura , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes , Proteínas Supressoras de Tumor/ultraestrutura , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitina-Proteína Ligases/ultraestrutura
12.
Mol Biol Cell ; 31(12): 1201-1205, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32463766

RESUMO

Many different enzymes in intermediate metabolism dynamically assemble filamentous polymers in cells, often in response to changes in physiological conditions. Most of the enzyme filaments known to date have only been observed in cells, but in a handful of cases structural and biochemical studies have revealed the mechanisms and consequences of assembly. In general, enzyme polymerization functions as a mechanism to allosterically tune enzyme kinetics, and it may play a physiological role in integrating metabolic signaling. Here, we highlight some principles of metabolic filaments by focusing on two well-studied examples in nucleotide biosynthesis pathways-inosine-5'-monophosphate (IMP) dehydrogenase and cytosine triphosphate (CTP) synthase.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , IMP Desidrogenase/metabolismo , Carbono-Nitrogênio Ligases/fisiologia , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , IMP Desidrogenase/fisiologia , Polimerização , Multimerização Proteica/fisiologia
13.
Elife ; 82019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30638443

RESUMO

The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial therapeutic targets.


Assuntos
Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Glicerofosfolipídeos/metabolismo , Lipopolissacarídeos/metabolismo , Acinetobacter baumannii/genética , Trifosfato de Adenosina/química , Transporte Biológico , Biologia Computacional , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Hidrólise , Conformação Molecular , Mutagênese , Mutação , Fenótipo
14.
Mol Biol Cell ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794265

RESUMO

Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA