Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690648

RESUMO

Atypical sustained attention is a symptom in a number of neurological and psychological conditions. Investigations into its neural underpinnings are required for improved management and treatment. Rodents are useful in investigating the neurobiology underlying atypical sustained attention and several rodent tasks have been developed for use in touchscreen testing platforms that mimic methodology used in human clinical attention assessment. This systematic review was conducted to assess how translatable these rodent tasks are to equivalent clinical human tasks. Studies using the rodent Continuous Performance Task (rCPT), Sustained Attention Task (SAT), and 5-choice CPT (5C-CPT) were sought and screened. Included in the review were 138 studies, using the rCPT (n = 21), SAT (n = 90), and 5C-CPT (n = 27). Translatability between rodent and human studies was assessed based on (1) methodological similarity, (2) performance similarity, and (3) replication of results. The 5C-CPT was found to be the most translatable cross-species paradigm with good utility, while the rCPT and SAT require adaptation and further development to meet these translatability benchmarks. With greater replication and more consistent results, greater confidence in the translation of sustained attention results between species will be engendered.

2.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977818

RESUMO

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Assuntos
Gagueira , Humanos , Animais , Camundongos , Gagueira/genética , Gagueira/patologia , Peptidil-Prolil Isomerase F , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico
3.
Neuroimage ; 231: 117701, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484853

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is a novel MR technique that allows mapping of tissue susceptibility values from MR phase images. QSM is an ill-conditioned inverse problem, and although several methods have been proposed in the field, in the presence of a wide range of susceptibility sources, streaking artifacts appear around high susceptibility regions and contaminate the whole QSM map. QSMART is a post-processing pipeline that uses two-stage parallel inversion to reduce the streaking artifacts and remove banding artifact at the cortical surface and around the vasculature. METHOD: Tissue and vein susceptibility values were separately estimated by generating a mask of vasculature driven from the magnitude data using a Frangi filter. Spatially dependent filtering was used for the background field removal step and the two susceptibility estimates were combined in the final QSM map. QSMART was compared to RESHARP/iLSQR and V-SHARP/iLSQR inversion in a numerical phantom, 7T in vivo single and multiple-orientation scans, 9.4T ex vivo mouse data, and 4.7T in vivo rat brain with induced focal ischemia. RESULTS: Spatially dependent filtering showed better suppression of phase artifacts near cortex compared to RESHARP and V-SHARP, while preserving voxels located within regions of interest without brain edge erosion. QSMART showed successful reduction of streaking artifacts as well as improved contrast between different brain tissues compared to the QSM maps obtained by RESHARP/iLSQR and V-SHARP/iLSQR. CONCLUSION: QSMART can reduce QSM artifacts to enable more robust estimation of susceptibility values in vivo and ex vivo.


Assuntos
Artefatos , Mapeamento Encefálico/normas , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Adulto , Animais , Isquemia Encefálica/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Ratos
4.
Brain Behav Immun ; 49: 197-205, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26052099

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) and microglial abnormalities have been implicated in autism spectrum disorder (ASD). However, controversy exists as to whether the receptor is down or upregulated in functioning in ASD. In addition, whilst activation of mGluR5 has been shown to attenuate microglial activation, its role in maintaining microglial homeostasis during development has not been investigated. We utilised published microarray data from the dorsolateral prefrontal cortex (DLPFC) of control (n=30) and ASD (n=27) individuals to carry out regression analysis to assess gene expression of mGluR5 downstream signalling elements. We then conducted a post-mortem brain stereological investigation of the DLPFC, to estimate the proportion of mGluR5-positive neurons and glia. Finally, we carried out stereological investigation into numbers of microglia in mGluR5 knockout mice, relative to wildtype littermates, together with assessment of changes in microglial somal size, as an indicator of activation status. We found that gene expression of mGluR5 was significantly decreased in ASD versus controls (p=0.018) as well as downstream elements SHANK3 (p=0.005) and PLCB1 (p=0.009) but that the pro-inflammatory marker NOS2 was increased (p=0.047). Intensity of staining of mGluR5-positive neurons was also significantly decreased in ASD versus controls (p=0.016). Microglial density was significantly increased in mGluR5 knockout animals versus wildtype controls (p=0.011). Our findings provide evidence for decreased expression of mGluR5 and its signalling components representing a key pathophysiological hallmark in ASD with implications for the regulation of microglial number and activation during development. This is important in the context of microglia being considered to play key roles in synaptic pruning during development, with preservation of appropriate connectivity relevant for normal brain functioning.


Assuntos
Transtorno do Espectro Autista/metabolismo , Microglia/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/genética
5.
J Autism Dev Disord ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446266

RESUMO

Research is equivocal on whether attention orienting is atypical in autism. This study investigated two types of attention orienting in autistic people and accounted for the potential confounders of alerting level, co-occurring symptoms of attention-deficit/hyperactivity disorder (ADHD) and anxiety, age, and sex. Twenty-seven autistic participants (14 males; 9-43 years) and 22 age- and sex-matched non-autistic participants (13 males; 9-42 years) completed the exogenous and endogenous Posner tasks. Response time and pupillometric data were recorded. Autistic participants were faster at orienting attention to valid cues in the exogenous task and slower at disengaging from invalid cues in the endogenous task compared to non-autistic participants. With increasing age, autistic participants showed faster exogenous and endogenous orienting, whereas non-autistic participants showed faster exogenous orienting but stable speed of endogenous orienting. Higher ADHD symptoms were associated with slower exogenous orienting in both groups, whereas higher anxiety symptoms were associated with faster exogenous orienting only in autistic participants. No group differences were noted for alerting levels, sex, or pupillary responses. This study provides new evidence of superior exogenous orienting and inefficient endogenous orienting in autistic people and suggests that age and co-occurring symptoms are important to consider when assessing attention orienting in autism.

6.
Behav Brain Res ; 460: 114810, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38122903

RESUMO

Frontotemporal dementia (FTD) is a neurodegenerative disorder that affects the frontal and temporal lobes of the brain, primarily in individuals under 65 years of age, and is the second most common form of dementia worldwide. There is no cure for FTD and current treatments offer limited symptomatic relief. Regular physical activity exhibits cognitive and neuroprotective benefits in healthy individuals and in various neurodegenerative diseases, such as Alzheimer's disease, but few studies have examined its efficacy in FTD. Accordingly, we investigated the impact of voluntary exercise training (VET) on the metabolic and behavioral characteristics of the rTg4510 transgenic mouse model of familial FTD. We show that regardless of genotype, VET increased energy expenditure, decreased sleep duration, and improved long-term memory in rTg4510 mice and WT littermates. Moreover, VET appeared to improve hyperactivity, a common feature of FTD, in rTg4510 mice. Although further work is required, these findings provide important insights into the potential benefits of physical activity in FTD.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Camundongos , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Camundongos Transgênicos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Lobo Temporal , Modelos Animais de Doenças , Exercício Físico
7.
Psychopharmacology (Berl) ; 241(3): 555-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170320

RESUMO

RATIONALE: Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE: The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS: NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS: In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS: NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.


Assuntos
Transtorno Autístico , Camundongos , Humanos , Animais , Cloridrato de Atomoxetina/farmacologia , Neuroliginas , Mutação/genética , Atenção
8.
Hippocampus ; 22(2): 309-19, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21080410

RESUMO

Schizophrenia is a devastating psychiatric illness with a complex pathophysiology. We have recently documented schizophrenia-like endophenotypes in phospholipase C-ß1 knockout (PLC-ß1(-/-)) mice, including deficits in prepulse inhibition, hyperlocomotion, and cognitive impairments. PLC-ß1 signals via multiple G-protein coupled receptor pathways implicated in neural cellular plasticity; however, adult neurogenesis has yet to be explored in this knockout model. In this study, we employed PLC-ß1(-/-) mice to elucidate possible correlates between aberrant adult hippocampal neurogenesis (AHN) and schizophrenia-like behaviors. Using stereology and bromodeoxyuridine (BrdU) immunohistochemistry we demonstrated a significant increase in the density of adult-generated cells in the granule cell layer (GCL) of adult PLC-ß1(-/-) mice compared with wild-type littermates. Cellular phenotype analysis using confocal microscopy revealed these cells to be mature granule neurons expressing NeuN and calbindin. Increased neuronal survival occurred concomitant with reduced caspase-3(+) cells in the GCL of PLC-ß1(-/-) mice. Stereological analysis of Ki67(+) cells in the subgranular zone suggested that neural precursor proliferation is unchanged in PLC-ß1(-/-) mice. We further showed aberrant migration of mature granule neurons within the GCL of adult PLC-ß1(-/-) mice with excessive adult-generated mature neurons residing in the middle and outer GCL. PLC-ß1(-/-) mice exhibited specific behavioral deficits in location recognition, a measure of hippocampal-dependent memory, but not novel object recognition. Overall, we have shown that PLC-ß1(-/-) mice have a threefold increase in net AHN, and have provided further evidence to suggest a specific deficit in hippocampal-dependent cognition. We propose that abnormal cellular plasticity in these mice may contribute to their schizophrenia-like behavioral endophenotypes.


Assuntos
Movimento Celular , Hipocampo/patologia , Neurogênese , Neurônios/patologia , Fosfolipase C beta/deficiência , Esquizofrenia/patologia , Células-Tronco Adultas/patologia , Animais , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Células-Tronco Neurais/patologia , Fosfolipase C beta/genética , Esquizofrenia/enzimologia , Esquizofrenia/genética
9.
Genes Brain Behav ; 21(1): e12757, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34085373

RESUMO

One of the earliest identifiable features of autism spectrum disorder (ASD) is altered attention. Mice expressing the ASD-associated R451C mutation in synaptic adhesion protein neuroligin-3 (NL3) exhibit impaired reciprocal social interactions and repetitive and restrictive behaviours. The role of this mutation in attentional abnormalities has not been established. We assessed attention in male NL3R451C mice using two well-established tasks in touchscreen chambers. In the 5-choice serial reaction task, rodents were trained to attend to light stimuli that appear in any one of five locations. While no differences between NL3R451C and WT mice were seen in accuracy or omissions, slower response times and quicker reward collection latencies were seen across all training and probe trials. In the rodent continuous-performance test, animals were required to discriminate, and identify a visual target pattern over multiple distractor stimuli. NL3R451C mice displayed enhanced ability to attend to stimuli when task-load was low during training and baseline but lost this advantage when difficulty was increased by altering task parameters in probe trials. NL3R451C mice made less responses to the distractor stimuli, exhibiting lower false alarm rates during all training stages and in probe trials. Slower response times and quicker reward latencies were consistently seen in NL3R451C mice in the rCPT. Slower response times are a major cognitive phenotype reported in ASD patients and are indicative of slower processing speed. Enhanced attention has been shown in a subset of ASD patients and we have demonstrated this phenotype also exists in the NL3R451C mouse model.


Assuntos
Atenção , Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Recompensa , Animais , Transtorno Autístico/fisiopatologia , Cognição , Feminino , Masculino , Camundongos , Mutação de Sentido Incorreto
10.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551782

RESUMO

The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.

11.
Work ; 70(3): 723-732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719458

RESUMO

BACKGROUND: During COVID-19 the workforce quickly adapted to using existing video-conferencing tools in order to work from home. OBJECTIVE: To explore use and experience of remote video-facilitated work practices in response to COVID-19: termed 'COVID Response Zoom-style Interactions (CRAZI)'. METHODS: A cross sectional study via a 66-item online survey for health and medical research and education sector workers. The survey included 8 sections: 1) pre-COVID video-conferencing meeting habits, 2) CRAZI meeting habits, 3) socialising, 4) CRAZI fashion, 5) behaviour standards, 6) family life, 7) future work, 8) participant demographics. Main outcomes were pre-COVID to CRAZI differences in frequency, length and type of video-based meetings, and video-conferencing experience. RESULTS: 202 participants, mostly Australian (median age 36-45, IQR 26-55 years) completed the survey. Women-to-men ratio was 3 : 1, 44.6%had children. COVID-19 changed video-conferencing frequency and maximum meeting size. Most participants found CRAZI meetings tiring and hard. Casual clothes dominated dress code (71.1%), pets were commonly seen. "Can you hear me now" was a commonly heard phrase. Good and bad behaviour were described, with formal codes of CRAZI conduct missing (58.7%) or unknown (21.9%). 76.6%of participants observed a child interrupting a CRAZI meeting, parents were mostly female. Despite challenges, most participants (76.6%) favoured video-conferencing post-pandemic, but preference for continuing to work from home varied. CONCLUSIONS: CRAZI work, while tiring, has fostered different work-practices that may continue beyond the pandemic. Working from home with children adds joy for others, but complexity for workers. Pets may help owners and co-workers cope with the pandemic.


Assuntos
COVID-19 , Adaptação Psicológica , Adulto , Austrália , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Comunicação por Videoconferência
12.
Genes Brain Behav ; 20(1): e12594, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31177612

RESUMO

While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.


Assuntos
Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Atenção , Comportamento Compulsivo/genética , Presenilina-1/genética , Doença de Alzheimer/genética , Animais , Comportamento Compulsivo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Front Behav Neurosci ; 15: 766745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938165

RESUMO

With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer's disease (AD) on two highly translatable touchscreen tasks - the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9-12 months of age, then on TUNL at 8-11 and 13-16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.

14.
Neurobiol Aging ; 108: 58-71, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509856

RESUMO

Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Função Executiva , Testes Neuropsicológicos , Tato/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Presenilina-1/genética , Recompensa , Percepção Visual/fisiologia
15.
Front Cell Dev Biol ; 8: 582320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195226

RESUMO

Schizophrenia (SZ) is a psychiatric disorder that constitutes one of the top 10 global causes of disability. More recently, a potential pathogenic role for the gut microbial community (microbiota) has been highlighted, with numerous studies describing dysregulated microbial profiles in SZ patients when compared to healthy controls. However, no animal model of SZ has previously recapitulated the gut dysbiosis observed clinically. Since the metabotropic glutamate receptor 5 (mGlu5) knockout mice provide a preclinical model of SZ with strong face and predictive validity, in the present study we performed gut microbiome profiling of mGlu5 knockout (KO) and wild-type (WT) mice by 16S rRNA sequencing of bacterial genomic DNA from fecal samples, analyzing bacterial diversity and taxonomic composition, as well as gastrointestinal parameters as indicators of gut function. We found a significant genotype difference in microbial beta diversity. Analysis of composition of microbiomes (ANCOM) models were performed to evaluate microbiota compositions, which identified a decreased relative abundance of the Erysipelotrichaceae family and Allobaculum genus in this mouse model of SZ. We also identified a signature of bacteria discriminating between the genotypes (KO and WT), consisting of the Erysipelotrichales, Bacteroidales, and Clostridiales orders and macroscopic gut differences. We thus uncovered global differential community composition in the gut microbiota profile between mGlu5 KO and WT mice, outlining the first evidence for gut dysbiosis in a genetic animal model of SZ. Our findings suggest that this widely used preclinical model of SZ also has substantial utility for investigations of gut dysbiosis and associated signaling via the microbiota-gut-brain axis, as potential modulators of SZ pathogenesis. Our discovery opens up new avenues to explore gut dysbiosis and its proposed links to brain dysfunction in SZ, as well as novel therapeutic approaches to this devastating disorder.

16.
Behav Brain Res ; 369: 111916, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31004684

RESUMO

Upper airway and vocalization control areas such as the periaqueductal gray (PAG), kölliker-fuse nucleus (KF) and nucleus retroambiguus (NRA) are prone to developing tauopathy in mice expressing the mutant human tau P301L protein. Consequently, impaired ultrasonic vocalization (USV) previously identified in tau-P301L mice at the terminal disease stage of 8-9 months of age, was attributed to the presence of tauopathy in these regions. Our aim was to establish whether the onset of USV disorders manifest prior to the terminal stage, and if USV disorders are predictive of the presence of tauopathy in the PAG, KF and NRA. USVs produced by tau-P301L and wildtype mice aged 3-4, 5-6 or 8-9 months were recorded during male-female interaction. Immunohistochemistry was then performed to assess the presence or degree of tauopathy in the PAG, KF and NRA of mice displaying normal or abnormal USV patterns. Comparing various USV measurements, including the number, duration and frequency of calls, revealed no differences between tau-P301L and wildtype mice across all age groups, and linear discriminant analysis also failed to identify separate USV populations. Finally, the presence of tauopathy in the PAG, KF and NRA in individual tau-P301L mice did not reliably associate with USV disorders. Our findings that tauopathy in designated mammalian vocalization centres, such as the PAG, KF and NRA, did not associate with USV disturbances in tau-P301L mice questions whether USV phenotypes in this transgenic mouse are valid for studying tauopathy-related human voice and speech disorders.


Assuntos
Tauopatias/metabolismo , Vocalização Animal/fisiologia , Proteínas tau/genética , Animais , Feminino , Núcleo de Kölliker-Fuse/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Substância Cinzenta Periaquedutal/fisiologia , Ondas Ultrassônicas
17.
Sci Rep ; 9(1): 18651, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819151

RESUMO

Chronic alcohol use is associated with cognitive decline that impedes behavioral change during rehabilitation. Despite this, addiction therapy does not address cognitive deficits, and there is poor understanding regarding the mechanisms that underlie this decline. We established a rodent model of chronic voluntary alcohol use to measure ensuing cognitive effects and underlying pathology. Rats had intermittent access to alcohol or an isocaloric solution in their home cage under voluntary 2-bottle choice conditions. In Experiments 1 and 2 cognition was assessed using operant touchscreen chambers. We examined performance in a visual discrimination and reversal task (Experiment 1), and a 5-choice serial reaction time task (Experiment 2). For Experiment 3, rats were perfused immediately after cessation of alcohol access period, and volume, cell density and microglial populations were assessed in the prefrontal cortex and striatum. Volume was assessed using the Cavalieri probe, while cell and microglial counts were estimated using unbiased stereology with an optical fractionator. Alcohol-exposed and control rats showed comparable acquisition of pairwise discrimination; however, performance was impaired when contingencies were reversed indicating reduced behavioral flexibility. When tested in a 5-choice serial reaction time task alcohol-exposed rats showed increased compulsivity and increased attentional bias towards a reward associated cue. Consistent with these changes, we observed decreased cell density in the prefrontal cortex. These findings confirm a detrimental effect of chronic alcohol and establish a model of alcohol-induced cognitive decline following long-term voluntary intake that may be used for future intervention studies.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/genética , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/patologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Aprendizagem por Discriminação/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/farmacologia , Humanos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Tempo de Reação/efeitos dos fármacos
18.
Hippocampus ; 18(8): 824-34, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18493969

RESUMO

The complexity of the genetics underlying schizophrenia is highlighted by the multitude of molecular pathways that have been reported to be disrupted in the disorder including muscarinic, serotonergic, and glutamatergic signaling systems. It is of interest, therefore, that phospholipase C-beta1 (PLC-beta1) acts as a point of convergence for these pathways during cortical development and plasticity. These signaling pathways, furthermore, are susceptible to modulation by RGS4, one of the more promising candidate genes for schizophrenia. PLC-beta1 knockout mice were behaviorally assessed on tests including fear conditioning, elevated plus maze, and the Y maze. In situ hybridization was used to assess RGS4 expression. We found that PLC-beta1 knockout mice display abnormal anxiety profiles on some, but not all measures assessed, including decreased anxiety on the elevated plus maze. We also show memory impairment and a complete absence of acquisition of hippocampal-dependent fear conditioning. Furthermore, at a molecular level, we demonstrate dramatic changes in expression of RGS4 mRNA in selective regions of the PLC-beta1 knockout mouse brain, particularly the CA1 region of the hippocampus. These results validate the utility of the PLC-beta1 knockout mouse as a model of schizophrenia, including molecular and cellular evidence for disrupted cortical maturation and associated behavioral endophenotypes.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Fosfolipase C beta/deficiência , Proteínas RGS/genética , Animais , Ansiedade/fisiopatologia , Sequência de Bases , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Primers do DNA/genética , Medo/fisiologia , Feminino , Regulação da Expressão Gênica , Hipocampo/fisiologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfolipase C beta/genética , Fosfolipase C beta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esquizofrenia/etiologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Detecção de Sinal Psicológico
19.
Sci Rep ; 8(1): 16412, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401923

RESUMO

Metabotropic glutamate receptor 5 (mGlu5) has been implicated in certain forms of synaptic plasticity and cognitive function. mGlu5 knockout (KO) mice and mGlu5 antagonists have been previously used to study the pathophysiology of schizophrenia as they have been shown respectively to display or induce endophenotypes relevant to schizophrenia. While schizophrenia presents with generalized cognitive impairments, the cognitive phenotype of mice lacking mGlu5 has so far only been explored using largely hippocampal-dependent spatial and contextual memory tasks. To address this, we used a touchscreen system to assess mGlu5 KO mice for pairwise visual discrimination, reversal learning, and extinction of an instrumental response requiring no discrimination. Furthermore, we tested the role of mGlu5 in working memory using the Trial-Unique Non-Matching to Location (TUNL) task utilizing pharmacological ablation. mGlu5 KO mice were impaired on discrimination learning, taking longer to reach criterion and requiring more correction learning trials. Performance on reversal learning was also impaired, with mGlu5 KO mice demonstrating a perseverative phenotype. The mGlu5 KO mice responded at a higher rate during extinction, consistent with this perseverative profile. In contrast, wildtype mice treated acutely with an mGlu5 antagonist (MTEP) showed no deficits in a touchscreen task assessing working memory. The present study demonstrates learning and memory deficits as well as an increased perseverative phenotype following constitutive loss of mGlu5 in this mouse model of schizophrenia. These findings will inform translational approaches using this preclinical model and the pursuit of mGlu5 as therapeutic target for schizophrenia and other brain disorders.


Assuntos
Cognição , Receptor de Glutamato Metabotrópico 5/deficiência , Receptor de Glutamato Metabotrópico 5/genética , Esquizofrenia/fisiopatologia , Animais , Discriminação Psicológica , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Masculino , Memória de Curto Prazo , Camundongos , Reversão de Aprendizagem/fisiologia , Esquizofrenia/metabolismo , Interface Usuário-Computador , Percepção Visual/fisiologia
20.
Brain Plast ; 4(1): 127-150, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30564551

RESUMO

Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA