Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Rep ; 8: 1207-1219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189057

RESUMO

Coal dust is a source of pollution not only for atmospheric air but also for the marine environment. In places of storage and handling of coal near water bodies, visible pollution of the water area can be observed. Coal, despite its natural origin, can be referred to as anthropogenic sources of pollution. If coal microparticles enter the marine environment, it may cause both physical and toxic effects on organisms. The purpose of this review is to assess the stage of knowledge of the impact of coal particles on marine organisms, to identify the main factors affecting them, and to define advanced research directions. The results presented in the review have shown that coal dust in seawater is generally not an inert substance for marine organisms, and there is a need for further study of the impact of coal dust particles on marine ecosystems.

2.
Toxicol Rep ; 6: 120-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30671347

RESUMO

This research article investigates the particulate matter originated from the exhaust emissions of 20 bus models, within the territory of Vladivostok, Russian Federation. The majority of evaluated buses (17 out of 20) had emissions of large particles with sizes greater than 400 µm, which account for more than 80% of all measured particles. The analysis of the elemental composition showed that the exhaust emissions contained Al, Cd, Cu, Fe, Mg, Ni, Pb, and Zn, with the concentration of Zn prevailing in all samples by two to three orders of magnitude higher than the concentrations of the other elements.

3.
Toxicol Rep ; 5: 224-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854593

RESUMO

Despite the fact that environmental pollution due to motorcycle exhaust gases reports a great increase, motorcycle production exhibits a great increase through the last years. Countries of Asia and Africa are reported to be the major regions where two-wheeled vehicles are a major transportation mode, with tens of millions of units sold per year. Motorcycle exhaust particles are considered to be the major contributor to environmental pollution due to their airborne dispersion, containing great amount of polycyclic aromatic hydrocarbons (PAHs). This study aims at reporting an objective analysis of the main sources of the ambient air pollution as also particle size distribution and chemical composition analysis of particulate matter originated from the exhausts of two-wheeled vehicles used in the territory of Vladivostok, Russia. Various types of two-wheeled vehicles were examined (motorcycles, ATVs, scooters and wet bikes) using different types of engine and fuel system. Experimental results showed that there was no clear relation to the particle size distribution with the engine displacement of motorcycle and the number of strokes and the fuel system. Instead, there were reported two clear assumptions. The first one is that regarding to the motorcycle brand, a few samples did not exhibit a great percentage of PM10 fraction. The second one is that more modern vehicles, that have a harmful gas afterburning system, are usually the source of an increased percentage of PM10 emitted particles. At last, it should be mentioned that the laser particle size analysis method is capable of determining the particle sizes after their agglomeration whereas the optical morphometry method allows to determine the real particle size of emissions. In conclusion, it can be pointed out that the agglomeration of particles can lead to the reduction in the toxicity of particles emissions originated from two wheeled-vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA