RESUMO
BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.
Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , VasodilataçãoRESUMO
Neurodegenerative disorders are typically featured by the occurrence of neuronal inclusions. In the case of Parkinson's disease (PD) these correspond to Lewy bodies (LBs), which are routinely defined as proteinaceous inclusions composed of alpha-synuclein (alpha-syn). In turn, alpha-syn is considered to be the key protein in producing PD and fostering its progression. Recent studies challenged such a concept and emphasized the occurrence of other proteins such as p62 and poly-ubiquitin (Poly-ub) in the composition of LBs, which are also composed of large amounts of tubulo-vesicular structures. All these components, which accumulate within the cytosol of affected neurons in PD, may be the consequence of a dysfunction of major clearing pathways. In fact, autophagy-related systems are constantly impaired in inherited PD and genetic models of PD. The present study was designed to validate whether a pharmacological inhibition of autophagy within catecholamine cells produces cell damage and accumulation of specific proteins and tubulo-vesicular structures. The stoichiometry counts of single proteins, which accumulate within catecholamine neurons was carried out along with the area of tubulo-vesicular structures. In these experimental conditions p62 and Poly-ub accumulation exceeded at large the amounts of alpha-syn. In those areas where Poly-ub and p62 were highly expressed, tubulo-vesicular structures were highly represented compared with surrounding cytosol. The present study confirms new vistas about LBs composition and lends substance to the scenario that autophagy inhibition rather than a single protein dysfunction as key determinant of PD.
RESUMO
In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Corpos de Lewy , Corpo Estriado , Progressão da DoençaRESUMO
Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.
Assuntos
Pressão Sanguínea , Catecolaminas , Metanfetamina , Camundongos Endogâmicos C57BL , Neurônios , Animais , Metanfetamina/efeitos adversos , Metanfetamina/farmacologia , Metanfetamina/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Masculino , Catecolaminas/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Bulbo/metabolismo , Bulbo/efeitos dos fármacosRESUMO
BACKGROUND AND PURPOSE: Human neuropathological studies indicate that the pontine nucleus Locus Coeruleus (LC) undergoes significant and early degeneration in Alzheimer's disease. This line of evidence alongside experimental data suggests that the LC functional/structural decay may represent a critical factor for Alzheimer's disease pathophysiological and clinical progression. In the present prospective study, we used Magnetic Resonance Imaging (MRI) with LC-sensitive sequence (LC-MRI) to investigate in vivo the LC involvement in Alzheimer's disease progression, and whether specific LC-MRI features at baseline are associated with prognosis and cognitive performance in amnestic Mild Cognitive Impairment. METHODS: LC-MRI parameters were measured at baseline by a template-based method on 3.0-T magnetic resonance images in 34 patients with Alzheimer's disease dementia, 73 patients with amnestic Mild Cognitive Impairment, and 53 cognitively intact individuals. A thorough neurological and neuropsychological assessment was performed at baseline and 2.5-year follow-up. RESULTS: In subjects with Mild Cognitive Impairment who converted to dementia (n = 32), the LC intensity and number of LC-related voxels were significantly lower than in cognitively intact individuals, resembling those observed in demented patients. Such a reduction was not detected in Mild Cognitive Impairment individuals, who remained stable at follow-up. In Mild Cognitive Impairment subjects converting to dementia, LC-MRI parameter reduction was maximal in the rostral part of the left nucleus. Structural equation modeling analysis showed that LC-MRI parameters positively correlate with cognitive performance. CONCLUSIONS: Our findings highlight a potential role of LC-MRI for predicting clinical progression in Mild Cognitive Impairment and support the key role of LC degeneration in the Alzheimer clinical continuum.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Locus Cerúleo/diagnóstico por imagem , Estudos Prospectivos , Progressão da Doença , Disfunção Cognitiva/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética/métodosRESUMO
The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.
Assuntos
Glioma , Proteínas PrPC , Príons , Humanos , Proteínas Priônicas , Príons/metabolismo , Glioma/genética , Autofagia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas PrPC/metabolismo , Microambiente TumoralRESUMO
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Assuntos
Zumbido , Humanos , Células Ciliadas Auditivas Externas , Estereocílios , Som , Estimulação AcústicaRESUMO
α-Synuclein (α-syn) is a protein involved in neuronal degeneration. However, the family of synucleins has recently been demonstrated to be involved in the mechanisms of oncogenesis by selectively accelerating cellular processes leading to cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, with a specifically high neurotropism. The molecular bases of this biological behavior are currently poorly understood. Here, α-synuclein was analyzed concerning the protein expression in PDAC and the potential association with PDAC neurotropism. Tumor (PDAC) and extra-tumor (extra-PDAC) samples from 20 patients affected by PDAC following pancreatic resections were collected at the General Surgery Unit, University of Pisa. All patients were affected by moderately or poorly differentiated PDAC. The amount of α-syn was compared between tumor and extra-tumor specimen (sampled from non-affected neighboring pancreatic areas) by using in situ immuno-staining with peroxidase anti-α-syn immunohistochemistry, α-syn detection by using Western blotting, and electron microscopy by using α-syn-conjugated immuno-gold particles. All the methods consistently indicate that each PDAC sample possesses a higher amount of α-syn compared with extra-PDAC tissue. Moreover, the expression of α-syn was much higher in those PDAC samples from tumors with perineural infiltration compared with tumors without perineural infiltration.
Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , alfa-Sinucleína/metabolismo , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias PancreáticasRESUMO
The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.
Assuntos
Bacopa , Metanfetamina , Fármacos Neuroprotetores , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Bacopa/química , Catecolaminas , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismoRESUMO
The hypothalamus and Locus Coeruleus (LC) share a variety of functions, as both of them take part in the regulation of the sleep/wake cycle and in the modulation of autonomic and homeostatic activities. Such a functional interplay takes place due to the dense and complex anatomical connections linking the two brain structures. In Alzheimer's disease (AD), the occurrence of endocrine, autonomic and sleep disturbances have been associated with the disruption of the hypothalamic network; at the same time, in this disease, the occurrence of LC degeneration is receiving growing attention for the potential roles it may have both from a pathophysiological and pathogenetic point of view. In this review, we summarize the current knowledge on the anatomical and functional connections between the LC and hypothalamus, to better understand whether the impairment of the former may be responsible for the pathological involvement of the latter, and whether the disruption of their interplay may concur to the pathophysiology of AD. Although only a few papers specifically explored this topic, intriguingly, some pre-clinical and post-mortem human studies showed that aberrant protein spreading and neuroinflammation may cause hypothalamus degeneration and that these pathological features may be linked to LC impairment. Moreover, experimental studies in rodents showed that LC plays a relevant role in modulating the hypothalamic sleep/wake cycle regulation or neuroendocrine and systemic hormones; in line with this, the degeneration of LC itself may partly explain the occurrence of hypothalamic-related symptoms in AD.
Assuntos
Doença de Alzheimer , Hipotálamo , Locus Cerúleo , Transtornos do Sono-Vigília , Doença de Alzheimer/patologia , Encéfalo , Humanos , Hipotálamo/patologia , Locus Cerúleo/patologiaRESUMO
Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.
Assuntos
Doença de Alzheimer/fisiopatologia , Barreira Hematoencefálica/fisiopatologia , Locus Cerúleo/fisiologia , Acoplamento Neurovascular/fisiologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Humanos , Locus Cerúleo/patologiaRESUMO
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin-proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Assuntos
Convulsões/enzimologia , Convulsões/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismoRESUMO
The coordinated activities of autophagy and the ubiquitin proteasome system (UPS) are key to preventing the aggregation and toxicity of misfold-prone proteins which manifest in a number of neurodegenerative disorders. These include proteins which are encoded by genes containing nucleotide repeat expansions. In the present review we focus on the overlapping role of autophagy and the UPS in repeat expansion proteotoxicity associated with chromosome 9 open reading frame 72 (C9ORF72) and androgen receptor (AR) genes, which are implicated in two motor neuron disorders, amyotrophic lateral sclerosis (ALS) and spinal-bulbar muscular atrophy (SBMA), respectively. At baseline, both C9ORF72 and AR regulate autophagy, while their aberrantly-expanded isoforms may lead to a failure in both autophagy and the UPS, further promoting protein aggregation and toxicity within motor neurons and skeletal muscles. Besides proteotoxicity, autophagy and UPS alterations are also implicated in neuromuscular junction (NMJ) alterations, which occur early in both ALS and SBMA. In fact, autophagy and the UPS intermingle with endocytic/secretory pathways to regulate axonal homeostasis and neurotransmission by interacting with key proteins which operate at the NMJ, such as agrin, acetylcholine receptors (AChRs), and adrenergic beta2 receptors (B2-ARs). Thus, alterations of autophagy and the UPS configure as a common hallmark in both ALS and SBMA disease progression. The findings here discussed may contribute to disclosing overlapping molecular mechanisms which are associated with a failure in cell-clearing systems in ALS and SBMA.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Atrofia Muscular Espinal/metabolismo , Junção Neuromuscular/metabolismo , Esclerose Lateral Amiotrófica/etiologia , Animais , Autofagia , Biomarcadores , Proteína C9orf72/genética , Expansão das Repetições de DNA , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Atrofia Muscular Espinal/etiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de SinaisRESUMO
Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid-retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates' accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch's membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed.
Assuntos
Autofagia/genética , Degeneração Macular/metabolismo , Compostos Fitoquímicos/uso terapêutico , Epitélio Pigmentado da Retina/metabolismo , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corioide/patologia , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/etiologia , Degeneração Macular/patologia , Oxirredução , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologiaRESUMO
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson's disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Assuntos
Autofagia , Transtornos Parkinsonianos/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , alfa-Sinucleína/metabolismo , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , ProteóliseRESUMO
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Assuntos
Neuroimunomodulação , Plasticidade Neuronal , Animais , Autofagia , Biomarcadores , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transmissão SinápticaRESUMO
Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors.
Assuntos
Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transmissão Sináptica/efeitos dos fármacosRESUMO
Methamphetamine (METH) exposure increases locomotor sensitization. However, no study has explored the occurrence of cardiovascular sensitization. The present study, carried out in mice, analyzed the following: (i) METH sensitization extending to systolic blood pressure (SBP); (ii) a potential correlation between ambulatory and cardiovascular sensitization; and (iii) morphological alterations within meso-striatal, meso-limbic and pontine catecholamine systems including c-fos expression. Locomotor activity, SBP and occurrence of morphological alterations of catecholaminergic neurons were assessed in C57Bl/6J mice following daily i.p. injections of either saline or METH (1, 2 or 5 mg/kg) for 5 consecutive days and following 6 days of withdrawal. Reiterated exposure to the lower doses of METH (1 mg/kg and 2 mg/kg) produced in mice locomotor sensitization without altering SBP. In contrast, repeated treatment with the highest dose of METH (5 mg/kg) produced sensitization of SBP in the absence of locomotor sensitization. No morphological alterations but increases in c-fos expression within neurons of locus coeruleus and nucleus accumbens were detected. The present data suggest that METH produces plastic changes that extend beyond the motor systems to alter autonomic regulation. This cardiovascular sensitization occurs independently of locomotor sensitization. The persistency of increased blood pressure may underlie specific mechanisms operating in producing hypertension.
RESUMO
Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1â mg/kg, i.p., once a day for 5â d followed by 7â d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.
Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glutamato Metabotrópico , Reconhecimento Psicológico , Animais , Metanfetamina/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Masculino , Estimulantes do Sistema Nervoso Central/farmacologia , Transtornos da Memória/metabolismo , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismoRESUMO
The high salt-fed stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable tool to study the mechanisms underlying stroke pathogenesis. Salt intake modifies the gut microbiota (GM) in rats and humans and alterations of the GM have previously been associated with increased stroke occurrence. We aimed to characterize the GM profile in SHRSPs fed a high-salt stroke-permissive diet (Japanese diet, JD), compared to the closely related stroke-resistant control (SHRSR), to identify possible changes associated with stroke occurrence. SHRSPs and SHRSRs were fed a regular diet or JD for 4 weeks (short-term, ST) or a maximum of 10 weeks (long-term, LT). Stroke occurred in SHRSPs on JD-LT, preceded by proteinuria and diarrhoea. The GM of JD-fed SHRSPs underwent early and late compositional changes compared to SHRSRs. An overrepresentation of Streptococcaceae and an underrepresentation of Lachnospiraceae were observed in SHRSPs JD-ST, while in SHRSPs JD-LT short-chain fatty acid producers, e.g. Lachnobacterium and Faecalibacterium, decreased and pathobionts such as Coriobacteriaceae and Desulfovibrio increased. Occludin gene expression behaved differently in SHRSPs and SHRSRs. Calprotectin levels were unchanged. In conclusion, the altered GM in JD-fed SHRSPs may be detrimental to gut homeostasis and contribute to stroke occurrence.