Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(39): e2301201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264768

RESUMO

Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.


Assuntos
Grafite , Animais , Camundongos , Grafite/farmacologia , Pulmão , Macrófagos
2.
Part Fibre Toxicol ; 19(1): 62, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131347

RESUMO

BACKGROUND: A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS: GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS: Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.


Assuntos
Grafite , Animais , DNA , Dano ao DNA , Grafite/toxicidade , Humanos , Inflamação/induzido quimicamente , Pulmão , Camundongos
3.
Langmuir ; 37(2): 867-873, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33400877

RESUMO

Graphene oxide (GO) nanosheet suspension is not stable in physiological ionic fluids. To improve stability, surfactants such as Pluronic 103 (P103) have been tested. Going further, this work investigated whether conferring positive surface charge to the surfactant may improve the adsorption ability of P103 micelles on GO sheets. Positive charge on the surfactant was induced by adding dodecyltrimethylammonium bromide (DTAB, a cationic surfactant) in P103 micelles. Subsequent changes in aggregation parameters were investigated through dynamic light scattering and small-angle neutron scattering studies. DTAB incorporation was accompanied by a steady increase in the ζ potential and mixed micelle formation. At high surface charge density, the interaction between adjacent head groups was distorted, which led to dissociation of mixed micelles. Structural developments during the adsorption of mixed micelles on the sheet surface (mass fractal formation) were monitored in terms of changes in the scattering features of aggregates. These fractals emerged as a result of electrostatic interactions. Our observations point toward the existence of small-sized building blocks at low DTAB concentration (≤4 mM). With a superior adsorption, mixed micelles are expected to occupy the intersheet space and maintain a hydration layer. However, at a higher DTAB concentration (≥10 mM), micelles dissociate to produce DTAB-rich unimers and P103-rich loose aggregates. At this point, sheets tend to aggregate in the solvent, regardless of fractal formation.

4.
Small ; : e2004029, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33210448

RESUMO

Carbon-based nanomaterials (CNMs) are being explored for neurological applications. However, systematic in vivo studies investigating the effects of CNM nanocarriers in the brain and how brain cells respond to such nanomaterials are scarce. To address this, functionalized multiwalled carbon nanotubes and graphene oxide (GO) sheets are injected in mice brain and compared with charged liposomes. The induction of acute neuroinflammatory and neurotoxic effects locally and in brain structures distant from the injection site are assessed up to 1 week postadministration. While significant neuronal cell loss and sustained microglial cell activation are observed after injection of cationic liposomes, none of the tested CNMs induces either neurodegeneration or microglial activation. Among the candidate nanocarriers tested, GO sheets appear to elicit the least deleterious neuroinflammatory profile. At molecular level, GO induces moderate activation of proinflammatory markers compared to vehicle control. At histological level, brain response to GO is lower than after vehicle control injection, suggesting some capacity for GO to reduce the impact of stereotactic injection on brain. While these findings are encouraging and valuable in the selection and design of nanomaterial-based brain delivery systems, they warrant further investigations to better understand the mechanisms underlying GO immunomodulatory properties in brain.

5.
Arch Toxicol ; 92(11): 3359-3379, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30259072

RESUMO

Graphene oxide (GO) is an oxidised form of graphene that has attracted commercial interest in multiple applications, including inks, printed electronics and spray coatings, which all raise health concerns due to potential creation of inhalable aerosols. Although a number of studies have discussed the toxicity of GO sheets, the in vivo impact of their lateral dimensions is still not clear. Here, we compared the effects of large GO sheets (l-GO, 1-20 µm) with those of small GO sheets (s-GO, < 1 µm) in terms of mesothelial damage and peritoneal inflammation, after intraperitoneal (i.p.) injection in mice. To benchmark the outcomes, long and rigid multi-walled carbon nanotubes (MWCNTs) that were shown to be associated with asbestos-like pathogenicity on the mesothelium were also tested. Our aim was to assess whether lateral dimensions can be a predictor of inflammogenicity for GO sheets in a similar fashion as length is for MWCNTs. While long MWCNTs dispersed in 0.5% BSA induced a granulomatous response on the diaphragmatic mesothelium and immune cell recruitment to the peritoneal cavity, GO sheets dispersed under similar conditions did not cause any response, regardless of their lateral dimensions. We further interrogated whether tuning the surface reactivity of GO by testing different dispersions (5% dextrose instead of 0.5% BSA) may change the biological outcome. Although the change of dispersion did not alter the impact of GO on the mesothelium (i.e. no granuloma), we observed that, when dispersed in protein-free 5% dextrose solution, s-GO elicited a greater recruitment of monocytic cells to the peritoneal cavity than l-GO, or when dispersed in protein-containing solution. Such recruitment coincided with the greater ability of s-GO to interact in vivo with peritoneal macrophages and was associated with a greater surface reactivity in comparison to l-GO. In conclusion, large dimension was not a determining factor of the immunological impact of GO sheets after i.p. administration. For an equal dose, GO sheets with lateral dimensions similar to the length of long MWCNTs were less pathogenic than the MWCNTs. On the other hand, surface reactivity and the ability of some smaller GO sheets to interact more readily with immune cells seem to be key parameters that can be tuned to improve the safety profile of GO. In particular, the choice of dispersion modality, which affected these two parameters, was found to be of crucial importance in the assessment of GO impact in this model. Overall, these findings are essential for a better understanding of the parameters governing GO toxicity and inflammation, and the rational design of safe GO-based formulations for various applications, including biomedicine.


Assuntos
Epitélio/efeitos dos fármacos , Grafite/toxicidade , Inflamação/induzido quimicamente , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Cavidade Peritoneal , Distribuição Tecidual
6.
Arch Toxicol ; 89(9): 1543-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25098341

RESUMO

Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanotubos de Carbono/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Inflamação/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Titânio/administração & dosagem , Titânio/toxicidade , Proteína Supressora de Tumor p53/genética
7.
Acc Chem Res ; 46(3): 692-701, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23163827

RESUMO

Many consider carbon nanomaterials the poster children of nanotechnology, attracting immense scientific interest from many disciplines and offering tremendous potential in a diverse range of applications due to their extraordinary properties. Graphene is the youngest in the family of carbon nanomaterials. Its isolation, description, and mass fabrication has followed that of fullerenes and carbon nanotubes. Graphene's development and its adoption by many industries will increase unintended or intentional human exposure, creating the need to determine its safety profile. In this Account, we compare the lessons learned from the development of carbon nanotubes with what is known about graphene, based on our own investigations and those of others. Despite both being carbon-based, nanotubes and graphene are two very distinct nanomaterials. We consider the key physicochemical characteristics (structure, surface, colloidal properties) for graphene and carbon nanotubes at three different physiological levels: cellular, tissue, and whole body. We summarize the evidence for health effects of both materials at all three levels. Overall, graphene and its derivatives are characterized by a lower aspect ratio, larger surface area, and better dispersibility in most solvents compared to carbon nanotubes. Dimensions, surface chemistry, and impurities are equally important for graphene and carbon nanotubes in determining both mechanistic (aggregation, cellular processes, biodistribution, and degradation kinetics) and toxicological outcomes. Colloidal dispersions of individual graphene sheets (or graphene oxide and other derivatives) can easily be engineered without metallic impurities, with high stability and less aggregation. Very importantly, graphene nanostructures are not fiber-shaped. These features theoretically offer significant advantages in terms of safety over inhomogeneous dispersions of fiber-shaped carbon nanotubes. However, studies that directly compare graphene with carbon nanotubes are rare, making comparative considerations of their overall safety and risk assessment challenging. In this Account, we attempt to offer a set of rules for the development of graphene and its derivatives to enhance their overall safety and minimize the risks for adverse reactions in humans from exposure. These rules are: (1) to use small, individual graphene sheets that macrophages in the body can efficiently internalize and remove from the site of deposition; (2) to use hydrophilic, stable, colloidal dispersions of graphene sheets to minimize aggregation in vivo; and (3) to use excretable graphene material or chemically-modified graphene that can be degraded effectively. Such rules can only act as guidelines at this early stage in the development of graphene-based technologies, yet they offer a set of design principles for the fabrication and safe use of graphene material that will come in contact with the human body. In a broader context, the safety risks associated with graphene materials will be entirely dependent on the specific types of graphene materials and how they are investigated or applied. Therefore, generalizations about the toxicity of "graphene" as a whole will be inaccurate, possibly misleading, and should be avoided.


Assuntos
Grafite/química , Nanotubos de Carbono/toxicidade , Segurança , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Nanotubos de Carbono/química , Fatores de Risco
8.
Proc Natl Acad Sci U S A ; 108(27): 10952-7, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690348

RESUMO

Stroke is the second cause of death worldwide with ischemic stroke accounting for 80% of all stroke insults. Caspase-3 activation contributes to brain tissue loss and downstream biochemical events that lead to programmed cell death after traumatic brain injury. Alleviation of symptoms following ischemic neuronal injury can be potentially achieved by either genetic disruption or pharmacological inhibition of caspases. Here, we studied whether silencing of Caspase-3 using carbon nanotube-mediated in vivo RNA interference (RNAi) could offer a therapeutic opportunity against stroke. Effective delivery of siRNA directly to the CNS has been shown to normalize phenotypes in animal models of several neurological diseases. It is shown here that peri-lesional stereotactic administration of a Caspase-3 siRNA (siCas 3) delivered by functionalized carbon nanotubes (f-CNT) reduced neurodegeneration and promoted functional preservation before and after focal ischemic damage of the rodent motor cortex using an endothelin-1 induced stroke model. These observations illustrate the opportunity offered by carbon nanotube-mediated siRNA delivery and gene silencing of neuronal tissue applicable to a variety of different neuropathological conditions where intervention at well localized brain foci may offer therapeutic and functional benefits.


Assuntos
Isquemia Encefálica/terapia , Caspase 3/genética , Inibidores de Caspase , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Sequência de Bases , Isquemia Encefálica/enzimologia , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Células Cultivadas , Endotelina-1/toxicidade , Feminino , Terapia Genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanomedicina , Nanotubos de Carbono , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Desempenho Psicomotor , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley
9.
Nat Nanotechnol ; 19(5): 705-714, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366225

RESUMO

Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 µg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.


Assuntos
Grafite , Nanoestruturas , Humanos , Grafite/química , Masculino , Adulto , Feminino , Nanoestruturas/química , Adulto Jovem , Método Duplo-Cego , Frequência Cardíaca/efeitos dos fármacos , Administração por Inalação , Exposição por Inalação/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Tamanho da Partícula
10.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

11.
Part Fibre Toxicol ; 10: 24, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23800198

RESUMO

BACKGROUND: Carbon nanotubes (CNT) are a family of materials featuring a large range of length, diameter, numbers of walls and, quite often metallic impurities coming from the catalyst used for their synthesis. They exhibit unique physical properties, which have already led to an extensive development of CNT for numerous applications. Because of this development and the resulting potential increase of human exposure, an important body of literature has been published with the aim to evaluate the health impact of CNT. However, despite evidences of uptake and long-term persistence of CNT within macrophages and the central role of those cells in the CNT-induced pulmonary inflammatory response, a limited amount of data is available so far on the CNT fate inside macrophages. Therefore, the overall aim of our study was to investigate the fate of pristine single walled CNT (SWCNT) after their internalization by macrophages. METHODS: To achieve our aim, we used a broad range of techniques that aimed at getting a comprehensive characterization of the SWCNT and their catalyst residues before and after exposure of murine macrophages: X-ray diffraction (XRD), High Resolution (HR) Transmission Electron Microscopy (TEM), High Angle Annular Dark Field-Scanning TEM (HAADF-STEM) coupled to Electron Energy Loss Spectroscopy (EELS), as well as micro-X-ray fluorescence mapping (µXRF), using synchrotron radiation. RESULTS: We showed 1) the rapid detachment of part of the iron nanoparticles initially attached to SWCNT which appeared as free iron nanoparticles in the cytoplasm and nucleus of CNT-exposed murine macrophages, and 2) that blockade of intracellular lysosomal acidification prevented iron nanoparticles detachment from CNT bundles and protected cells from CNT downstream toxicity. CONCLUSIONS: The present results, while obtained with pristine SWCNT, could likely be extended to other catalyst-containing nanomaterials and surely open new ways in the interpretation and understanding of CNT toxicity.


Assuntos
Compostos de Ferro/metabolismo , Macrófagos/metabolismo , Nanopartículas Metálicas , Nanotubos de Carbono/análise , Animais , Catepsina B/metabolismo , Linhagem Celular , Concentração de Íons de Hidrogênio , Compostos de Ferro/toxicidade , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/toxicidade , Espectrometria por Raios X , Espectroscopia de Perda de Energia de Elétrons , Síncrotrons , Difração de Raios X
12.
Nanoscale ; 15(11): 5510-5518, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853236

RESUMO

Research on graphene based nanomaterials has flourished in the last decade due their unique properties and emerging socio-economic impact. In the context of their potential exploitation for biomedical applications, there is a growing need for the development of more efficient imaging techniques to track the fate of these materials. Herein we propose the first correlative imaging approach based on the combination of radioimaging and mass spectrometry imaging for the detection of Graphene Oxide (GO) labelled with carbon-14 in mice. In this study, 14C-graphene oxide nanoribbons were produced from the oxidative opening of 14C-carbon nanotubes, and were then intensively sonicated to provide nano-size 14C-GO flakes. After Intravenous administration in mice, 14C-GO distribution was quantified by radioimaging performed on tissue slices. On the same slices, MS-imaging provided a highly resolved distribution map of the nanomaterial based on the detection of specific radical anionic carbon clusters ranging from C2˙- to C9˙- with a base peak at m/z 72 (12C) and 74 (14C) under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. This proof of concept approach synergizes the strength of each technique and could be advantageous in the pre-clinical development of future Graphene-based biomedical applications.


Assuntos
Grafite , Nanotubos de Carbono , Animais , Camundongos , Grafite/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Distribuição Tecidual , Radioisótopos de Carbono
13.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051272

RESUMO

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Nanoestruturas/toxicidade , Pulmão/patologia , Compostos de Boro/toxicidade , Compostos de Boro/química
14.
Part Fibre Toxicol ; 9: 46, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181604

RESUMO

Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.


Assuntos
Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Aerossóis , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Nanotubos de Carbono/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Tamanho da Partícula , RNA Mensageiro/metabolismo , Propriedades de Superfície
15.
Adv Sci (Weinh) ; 9(11): e2104559, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166457

RESUMO

Graphene has drawn a lot of interest in the material community due to unique physicochemical properties. Owing to a high surface area to volume ratio and free oxygen groups, the oxidized derivative, graphene oxide (GO) has promising potential as a drug delivery system. Here, the lung tolerability of two distinct GO varying in lateral dimensions is investigated, to reveal the most suitable candidate platform for pulmonary drug delivery. Following repeated chronic pulmonary exposure of mice to GO sheet suspensions, the innate and adaptive immune responses are studied. An acute and transient influx of neutrophils and eosinophils in the alveolar space, together with the replacement of alveolar macrophages by interstitial ones and a significant activation toward anti-inflammatory subsets, are found for both GO materials. Micrometric GO give rise to persistent multinucleated macrophages and granulomas. However, neither adaptive immune response nor lung tissue remodeling are induced after exposure to micrometric GO. Concurrently, milder effects and faster tissue recovery, both associated to a faster clearance from the respiratory tract, are found for nanometric GO, suggesting a greater lung tolerability. Taken together, these results highlight the importance of dimensions in the design of biocompatible 2D materials for pulmonary drug delivery system.


Assuntos
Grafite , Imunidade Adaptativa , Animais , Materiais Biocompatíveis/química , Grafite/química , Grafite/farmacologia , Pulmão , Macrófagos , Camundongos
16.
Nanoscale ; 14(46): 17297-17314, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374249

RESUMO

An important aspect of immunotherapy is the ability of dendritic cells (DCs) to prime T cell immunity, an approach that has yielded promising results in some early phase clinical trials. However, novel approaches are required to improve DC therapeutic efficacy by enhancing their uptake of, and activation by, disease relevant antigens. The carbon nano-material graphene oxide (GO) may provide a unique way to deliver antigen to innate immune cells and modify their ability to initiate effective adaptive immune responses. We have assessed whether GO of various lateral sizes affects DC activation and function in vitro and in vivo, including their ability to take up, process and present the well-defined model antigen ovalbumin (OVA). We have found that GO flakes are internalised by DCs, while having minimal effect on their viability, activation phenotype or cytokine production. Although adsorption of OVA protein to either small or large GO flakes promoted its uptake into DCs, large GO interfered with OVA processing. In terms of modulation of DC function, delivery of OVA via small GO flakes significantly enhanced DC ability to induce proliferation of OVA-specific CD4+ T cells, promoting granzyme B secretion in vitro. On the other hand, delivery of OVA via large GO flakes augmented DC ability to induce proliferation of OVA-specific CD8+ T cells, and their production of IFN-γ and granzyme B. Together, these data demonstrate the capacity of GO of different lateral dimensions to act as a promising delivery platform for DC modulation of distinct facets of the adaptive immune response, information that could be exploited for future development of targeted immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Animais , Camundongos , Granzimas/metabolismo , Ovalbumina , Antígenos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
17.
J Hazard Mater ; 435: 129053, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650742

RESUMO

Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.


Assuntos
Grafite , Animais , Grafite/toxicidade , Camundongos , Plásticos
18.
Part Fibre Toxicol ; 8: 3, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255417

RESUMO

BACKGROUND: carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis. RESULTS: extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. CONCLUSIONS: these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Materiais Biocompatíveis , Nanotubos de Carbono/química , Exposição Ocupacional/efeitos adversos , Poliestirenos/química , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Exposição por Inalação , Intubação Intratraqueal , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Doenças Profissionais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
19.
Nanoscale Adv ; 3(14): 4166-4185, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132849

RESUMO

Graphene oxide (GO) holds great potential for biomedical applications, however fundamental understanding of the way it interacts with biological systems is still lacking even though it is essential for successful clinical translation. In this study, we exploit intrinsic fluorescent properties of thin GO sheets to establish the relationship between lateral dimensions of the material, its cellular uptake mechanisms and intracellular fate over time. Label-free GO with distinct lateral dimensions, small (s-GO) and ultra-small (us-GO) were thoroughly characterised both in water and in biologically relevant cell culture medium. Interactions of the material with a range of non-phagocytic mammalian cell lines (BEAS-2B, NIH/3T3, HaCaT, 293T) were studied using a combination of complementary analytical techniques (confocal microscopy, flow cytometry and TEM). The uptake mechanism was initially interrogated using a range of pharmaceutical inhibitors and validated using polystyrene beads of different diameters (0.1 and 1 µm). Subsequently, RNA-Seq was used to follow the changes in the uptake mechanism used to internalize s-GO flakes over time. Regardless of lateral dimensions, both types of GO were found to interact with the plasma membrane and to be internalized by a panel of cell lines studied. However, s-GO was internalized mainly via macropinocytosis while us-GO was mainly internalized via clathrin- and caveolae-mediated endocytosis. Importantly, we report the shift from macropinocytosis to clathrin-dependent endocytosis in the uptake of s-GO at 24 h, mediated by upregulation of mTORC1/2 pathway. Finally, we show that both s-GO and us-GO terminate in lysosomal compartments for up to 48 h. Our results offer an insight into the mechanism of interaction of GO with non-phagocytic cell lines over time that can be exploited for the design of biomedically-applicable 2D transport systems.

20.
Nanoscale Horiz ; 5(8): 1250-1263, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32558850

RESUMO

Graphene oxide (GO), an oxidised form of graphene, is widely used for biomedical applications, due to its dispersibility in water and simple surface chemistry tunability. In particular, small (less than 500 nm in lateral dimension) and thin (1-3 carbon monolayers) graphene oxide nanosheets (s-GO) have been shown to selectively inhibit glutamatergic transmission in neuronal cultures in vitro and in brain explants obtained from animals injected with the nanomaterial. This raises the exciting prospect that s-GO can be developed as a platform for novel nervous system therapeutics. It has not yet been investigated whether the interference of the nanomaterial with neurotransmission may have a downstream outcome in modulation of behaviour depending specifically on the activation of those synapses. To address this problem we use early stage zebrafish as an in vivo model to study the impact of s-GO on nervous system function. Microinjection of s-GO into the embryonic zebrafish spinal cord selectively reduces the excitatory synaptic transmission of the spinal network, monitored in vivo through patch clamp recordings, without affecting spinal cell survival. This effect is accompanied by a perturbation in the swimming activity of larvae, which is the locomotor behaviour generated by the neuronal network of the spinal cord. Such results indicate that the impact of s-GO on glutamate based neuronal transmission is preserved in vivo and can induce changes in animal behaviour. These findings pave the way for use of s-GO as a modulator of nervous system function.


Assuntos
Ácido Glutâmico/fisiologia , Grafite/farmacologia , Nanoestruturas/química , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Locomoção/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Medula Espinal/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA