Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 36(3): 393-404, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19917248

RESUMO

A preference for homologs over sister chromatids in homologous recombination is a fundamental difference in meiotic versus mitotic cells. In budding yeast, the bias for interhomolog recombination in meiosis requires the Dmc1 recombinase and the meiosis-specific kinase Mek1, which suppresses engagement of sister chromatids by the mitotic recombinase Rad51. Here, a combination of proteomic, biochemical, and genetic approaches has identified an additional role for Mek1 in inhibiting the activity of the Rad51 recombinase through phosphorylation of its binding partner, Rad54. Rad54 phosphorylation of threonine 132 attenuates complex formation with Rad51, and a negative charge at this position reduces Rad51 function in vitro and in vivo. Thus, Mek1 phosphorylation provides a dynamic means of controlling recombination partner choice in meiosis in two ways: (1) it reduces Rad51 activity through inhibition of Rad51/Rad54 complex formation, and (2) it suppresses Rad51-mediated strand invasion of sister chromatids via a Rad54-independent mechanism.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , MAP Quinase Quinase 1/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Immunoblotting , MAP Quinase Quinase 1/genética , Espectrometria de Massas , Meiose , Mutação , Fosforilação , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Treonina/metabolismo
2.
PLoS Genet ; 10(1): e1004005, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465215

RESUMO

Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Meiose/genética , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromátides/genética , Segregação de Cromossomos/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Recombinação Homóloga/genética , Mutação , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Esporos/crescimento & desenvolvimento
3.
J Biol Chem ; 288(20): 14221-14227, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23543748

RESUMO

The conserved BTR complex, composed of the Bloom's syndrome helicase (BLM), topoisomerase IIIα, RMI1, and RMI2, regulates homologous recombination in favor of non-crossover formation via the dissolution of the double Holliday Junction (dHJ). Here we show enhancement of the BTR-mediated dHJ dissolution reaction by the heterotrimeric single-stranded DNA binding protein replication protein A (RPA). Our results suggest that RPA acts by sequestering a single-stranded DNA intermediate during dHJ dissolution. We provide evidence that RPA physically interacts with RMI1. The RPA interaction domain in RMI1 has been mapped, and RMI1 mutants impaired for RPA interaction have been generated. Examination of these mutants ascertains the significance of the RMI1-RPA interaction in dHJ dissolution. Our results thus implicate RPA as a cofactor of the BTR complex in dHJ dissolution.


Assuntos
Proteínas de Transporte/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Sequência de Aminoácidos , DNA/genética , Reparo do DNA , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
4.
J Biol Chem ; 287(2): 1566-75, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22115747

RESUMO

During meiosis, recombination events that occur between homologous chromosomes help prepare the chromosome pairs for proper disjunction in meiosis I. The concurrent action of the Rad51 and Dmc1 recombinases is necessary for an interhomolog bias. Notably, the activity of Rad51 is tightly controlled, so as to minimize the use of the sister chromatid as recombination partner. We demonstrated recently that Hed1, a meiosis-specific protein in Saccharomyces cerevisiae, restricts the access of the recombinase accessory factor Rad54 to presynaptic filaments of Rad51. We now show that Hed1 undergoes self-association in a Rad51-dependent manner and binds ssDNA. We also find a strong stabilizing effect of Hed1 on the Rad51 presynaptic filament. Biochemical and genetic analyses of mutants indicate that these Hed1 attributes are germane for its recombination regulatory and Rad51 presynaptic filament stabilization functions. Our results shed light on the mechanism of action of Hed1 in meiotic recombination control.


Assuntos
Cromátides/metabolismo , Cromossomos Fúngicos/metabolismo , Meiose/fisiologia , Rad51 Recombinase/metabolismo , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromossomos Fúngicos/genética , DNA Helicases , Enzimas Reparadoras do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Mutação , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
N Biotechnol ; 33(5 Pt A): 565-73, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607994

RESUMO

Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target.


Assuntos
Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos , Diversidade de Anticorpos , Biotecnologia , Regiões Determinantes de Complementaridade/genética , Escherichia coli/genética , Ensaios de Triagem em Larga Escala , Humanos , Anticorpos de Cadeia Única/biossíntese
6.
J Immunol Methods ; 394(1-2): 55-61, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23680235

RESUMO

Affinity maturation is an important part of the recombinant antibody development process. There are several well-established approaches for generating libraries of mutated antibody genes for affinity maturation, but these approaches are generally too laborious or expensive to allow high-throughput, parallel processing of multiple antibodies. Here, we describe a scalable approach that enables the generation of libraries with greater than 10(8) clones from a single Escherichia coli transformation. In our method, a mutated DNA fragment is produced using PCR conditions that promote nucleotide misincorporation into newly synthesized DNA. In the PCR reaction, one of the primers contains at least three phosphorothioate linkages at its 5' end, and treatment of the PCR product with a 5' to 3' exonuclease is used to preferentially remove the strand synthesized with the non-modified primer, resulting in a single-stranded DNA fragment. This fragment then serves as a megaprimer to prime DNA synthesis on a uracilated, circular, single-stranded template in a Kunkel-like mutagenesis reaction that biases nucleotide base-changes between the megaprimer and uracilated DNA sequence in favor of the in vitro synthesized megaprimer. This method eliminates the inefficient subcloning steps that are normally required for the construction of affinity maturation libraries from randomly mutagenized antibody genes.


Assuntos
Mutagênese , Biblioteca de Peptídeos , Proteínas Recombinantes/biossíntese , Escherichia coli/genética , Reação em Cadeia da Polimerase
7.
DNA Repair (Amst) ; 12(9): 707-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23769192

RESUMO

The role of Dmc1 as a meiosis-specific general recombinase was first demonstrated in Saccharomyces cerevisiae. Progress in understanding the biochemical mechanism of ScDmc1 has been hampered by its tendency to form inactive aggregates. We have found that the inclusion of ATP during protein purification prevents Dmc1 aggregation. ScDmc1 so prepared is capable of forming D-loops and responsive to its accessory factors Rad54 and Rdh54. Negative staining electron microscopy and iterative helical real-space reconstruction revealed that the ScDmc1-ssDNA nucleoprotein filament harbors 6.5 protomers per turn with a pitch of ∼106Å. The ScDmc1 purification procedure and companion molecular analyses should facilitate future studies on this recombinase.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/química , Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Cromatografia em Gel , DNA Helicases/química , Enzimas Reparadoras do DNA/química , DNA Topoisomerases/química , DNA Fúngico/química , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Recombinação Homóloga , Humanos , Hidrólise , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
9.
Structure ; 18(9): 1159-70, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826342

RESUMO

Mutations in BLM, a RecQ-like helicase, are linked to the autosomal recessive cancer-prone disorder Bloom's syndrome. BLM associates with topoisomerase (Topo) IIIα, RMI1, and RMI2 to form the BLM complex that is essential for genome stability. The RMI1-RMI2 heterodimer stimulates the dissolution of double Holliday junction into non-crossover recombinants mediated by BLM-Topo IIIα and is essential for stabilizing the BLM complex. However, the molecular basis of these functions of RMI1 and RMI2 remains unclear. Here we report the crystal structures of multiple domains of RMI1-RMI2, providing direct confirmation of the existence of three oligonucleotide/oligosaccharide binding (OB)-folds in RMI1-RMI2. Our structural and biochemical analyses revealed an unexpected insertion motif in RMI1N-OB, which is important for stimulating the dHJ dissolution. We also revealed the structural basis of the interaction between RMI1C-OB and RMI2-OB and demonstrated the functional importance of the RMI1-RMI2 interaction in genome stability maintenance.


Assuntos
Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Síndrome de Bloom/metabolismo , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , DNA Topoisomerases Tipo I/química , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Humanos , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Subunidades Proteicas
10.
Genes Dev ; 22(6): 786-95, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18347097

RESUMO

Two RecA orthologs, Rad51 and Dmc1, mediate homologous recombination in meiotic cells. During budding yeast meiosis, Hed1 coordinates the actions of Rad51 and Dmc1 by down-regulating Rad51 activity. It is thought that Hed1-dependent attenuation of Rad51 facilitates formation of crossovers that are necessary for the correct segregation of chromosomes at the first meiotic division. We purified Hed1 in order to elucidate its mechanism of action. Hed1 binds Rad51 with high affinity and specificity. We show that Hed1 does not adversely affect assembly of the Rad51 presynaptic filament, but it specifically prohibits interaction of Rad51 with Rad54, a Swi2/Snf2-like factor that is indispensable for Rad51-mediated recombination. In congruence with the biochemical results, Hed1 prevents the recruitment of Rad54 to a site-specific DNA double-strand break in vivo but has no effect on the recruitment of Rad51. These findings shed light on the function of Hed1 and, importantly, unveil a novel mechanism for the regulation of homologous recombination.


Assuntos
Rad51 Recombinase/metabolismo , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/metabolismo , Clonagem Molecular , Dano ao DNA , DNA Helicases , Enzimas Reparadoras do DNA , Meiose/fisiologia , Mitose/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 283(23): 15701-8, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18390547

RESUMO

The BLAP75 protein combines with the BLM helicase and topoisomerase (Topo) IIIalpha to form an evolutionarily conserved complex, termed the BTB complex, that functions to regulate homologous recombination. BLAP75 binds DNA, associates with both BLM and Topo IIIalpha, and enhances the ability of the BLM-Topo IIIalpha pair to branch migrate the Holliday junction (HJ) or dissolve the double Holliday junction (dHJ) structure to yield non-crossover recombinants. Here we seek to understand the relevance of the biochemical attributes of BLAP75 in HJ processing. With the use of a series of BLAP75 protein fragments, we show that the evolutionarily conserved N-terminal third of BLAP75 mediates complex formation with BLM and Topo IIIalpha and that the DNA binding activity resides in the C-terminal third of this novel protein. Interestingly, the N-terminal third of BLAP75 is just as adept as the full-length protein in the promotion of dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. Thus, the BLAP75 DNA binding activity is dispensable for the ability of the BTB complex to process the HJ in vitro. Lastly, we show that a BLAP75 point mutant (K166A), defective in Topo IIIalpha interaction, is unable to promote dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. This result provides proof that the functional integrity of the BTB complex is contingent upon the interaction of BLAP75 with Topo IIIalpha.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Helicases/química , DNA Helicases/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Cruciforme/química , DNA Cruciforme/genética , Proteínas de Ligação a DNA , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mutação Puntual , RecQ Helicases
12.
Genes Dev ; 22(20): 2856-68, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923083

RESUMO

Bloom Syndrome is an autosomal recessive cancer-prone disorder caused by mutations in the BLM gene. BLM encodes a DNA helicase of the RECQ family, and associates with Topo IIIalpha and BLAP75/RMI1 (BLAP for BLM-associated polypeptide/RecQ-mediated genome instability) to form the BTB (BLM-Topo IIIalpha-BLAP75/RMI1) complex. This complex can resolve the double Holliday junction (dHJ), a DNA intermediate generated during homologous recombination, to yield noncrossover recombinants exclusively. This attribute of the BTB complex likely serves to prevent chromosomal aberrations and rearrangements. Here we report the isolation and characterization of a novel member of the BTB complex termed BLAP18/RMI2. BLAP18/RMI2 contains a putative OB-fold domain, and several lines of evidence suggest that it is essential for BTB complex function. First, the majority of BLAP18/RMI2 exists in complex with Topo IIIalpha and BLAP75/RMI1. Second, depletion of BLAP18/RMI2 results in the destabilization of the BTB complex. Third, BLAP18/RMI2-depleted cells show spontaneous chromosomal breaks and are sensitive to methyl methanesulfonate treatment. Fourth, BLAP18/RMI2 is required to target BLM to chromatin and for the assembly of BLM foci upon hydroxyurea treatment. Finally, BLAP18/RMI2 stimulates the dHJ resolution capability of the BTB complex. Together, these results establish BLAP18/RMI2 as an essential member of the BTB dHJ dissolvasome that is required for the maintenance of a stable genome.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/fisiologia , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleotídeos/metabolismo , Sequência de Aminoácidos , Animais , Síndrome de Bloom/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Células Cultivadas , Galinhas , Cromatina/genética , Cromatina/metabolismo , Cromatografia de Afinidade , Quebra Cromossômica , Biologia Computacional , DNA Helicases/química , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/fisiologia , DNA Cruciforme/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Células HeLa , Humanos , Hidroxiureia/farmacologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Microscopia de Fluorescência , Mitose , Dados de Sequência Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação/efeitos dos fármacos , Dobramento de Proteína , RNA Interferente Pequeno/farmacologia , RecQ Helicases , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
13.
J Biol Chem ; 282(43): 31484-92, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17728255

RESUMO

BLM, the protein mutated in Bloom's syndrome, possesses a helicase activity that can dissociate DNA structures, including the Holliday junction, expected to arise during homologous recombination. BLM is stably associated with topoisomerase IIIalpha (Topo IIIalpha) and the BLAP75 protein. The BLM-Topo IIIalpha-BLAP75 (BTB) complex can efficiently resolve a DNA substrate that harbors two Holliday junctions (the double Holliday junction) in a non-crossover manner. Here we show that the Holliday junction unwinding activity of BLM is greatly enhanced as a result of its association with Topo IIIalpha and BLAP75. Enhancement of this BLM activity requires both Topo IIIalpha and BLAP75. Importantly, Topo IIIalpha cannot be substituted by Escherichia coli Top3, and the Holliday junction unwinding activity of BLM-related helicases WRN and RecQ is likewise impervious to Topo IIIalpha and BLAP75. However, the topoisomerase activity of Topo IIIalpha is dispensable for the enhancement of the DNA unwinding reaction. We have also ascertained the requirement for the BLM ATPase activity in double Holliday junction dissolution and DNA unwinding by constructing, purifying, and characterizing specific mutant variants that lack this activity. These results provide valuable information concerning how the functional integrity of the BTB complex is governed by specific protein-protein interactions among the components of this complex and the enzymatic activities of BLM and Topo IIIalpha.


Assuntos
Proteínas de Transporte/metabolismo , DNA Topoisomerases Tipo I/fisiologia , DNA Cruciforme/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA , Escherichia coli/metabolismo , Variação Genética , Histidina/química , Humanos , Hidrólise , Mutação , Ligação Proteica , RecQ Helicases , Recombinação Genética , Especificidade por Substrato
14.
Cancer Res ; 66(17): 8397-403, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951149

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is a cancer susceptibility syndrome affecting several endocrine tissues. Investigations of the biochemical function of the MEN1 protein, menin, have suggested a role as a transcriptional comodulator. The mechanism by which MEN1 inactivation leads to tumor formation is not fully understood. MEN1 was implicated to function in both regulation of cell proliferation and maintenance of genomic integrity. Here, we investigate the mechanism by which MEN1 affects DNA damage response. We found that Drosophila larval tissue and mouse embryonic fibroblasts mutant for the MEN1 homologue were deficient for a DNA damage-activated S-phase checkpoint. The forkhead transcription factor CHES1 (FOXN3) was identified as an interacting protein by a genetic screen, and overexpression of CHES1 restored both cell cycle arrest and viability of MEN1 mutant flies after ionizing radiation exposure. We showed a biochemical interaction between human menin and CHES1 and showed that the COOH terminus of menin, which is frequently mutated in MEN1 patients, is necessary for this interaction. Our data indicate that menin is involved in the activation of S-phase arrest in response to ionizing radiation. CHES1 is a component of a transcriptional repressor complex, that includes mSin3a, histone deacetylase (HDAC) 1, and HDAC2, and it interacts with menin in an S-phase checkpoint pathway related to DNA damage response.


Assuntos
Proteínas de Ciclo Celular/genética , Dano ao DNA , DNA de Neoplasias/genética , Neoplasia Endócrina Múltipla Tipo 1/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fatores de Transcrição Forkhead , Fase G2 , Humanos , Larva , Neoplasia Endócrina Múltipla Tipo 1/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Transfecção
15.
Hum Mol Genet ; 13(20): 2399-408, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15333582

RESUMO

Multiple endocrine neoplasia type I (MEN1) is an autosomal dominant cancer predisposition syndrome, the gene for which encodes a nuclear protein, menin. The biochemical function of this protein has not been completely elucidated, but several studies have shown a role in transcriptional modulation through recruitment of histone deacetylase. The mechanism by which MEN1 mutations cause tumorigenesis is unknown. The Drosophila homolog of MEN1, Mnn1, encodes a protein 50% identical to human menin. In order to further elucidate the function of MEN1, we generated a null allele of this gene in Drosophila and showed that homozygous inactivation results in morphologically normal flies that are hypersensitive to ionizing radiation and two DNA cross-linking agents, nitrogen mustard and cisplatinum. The spectrum of agents to which mutant flies are sensitive and analysis of the molecular mechanisms of this sensitivity suggest a defect in nucleotide excision repair. Drosophila Mnn1 mutants have an elevated rate of both sporadic and DNA damage-induced mutations. In a genetic background heterozygous for lats, a Drosophila and vertebrate tumor suppressor gene, homozygous inactivation of Mnn1 enhanced somatic mutation of the second allele of lats and formation of multiple primary tumors. Our data indicate that Mnn1 is a novel member of the class of autosomal dominant cancer genes that function in maintenance of genomic integrity, similar to the BRCA and HNPCC genes.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Neoplasia Endócrina Múltipla Tipo 1/genética , Mutação/genética , Animais , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Modelos Animais de Doenças , Drosophila/efeitos dos fármacos , Drosophila/efeitos da radiação , Mecloretamina/farmacologia , Mutagênicos/farmacologia , Tolerância a Radiação/genética , Radiação Ionizante , Recombinação Genética , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA