Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 293(13): 4666-4679, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602878

RESUMO

Klebsiella pneumoniae is a major health threat. Vaccination and passive immunization are considered as alternative therapeutic strategies for managing Klebsiella infections. Lipopolysaccharide O antigens are attractive candidates because of the relatively small range of known O-antigen polysaccharide structures, but immunotherapeutic applications require a complete understanding of the structures found in clinical settings. Currently, the precise number of Klebsiella O antigens is unknown because available serological tests have limited resolution, and their association with defined chemical structures is sometimes uncertain. Molecular serotyping methods can evaluate clinical prevalence of O serotypes but require a full understanding of the genetic determinants for each O-antigen structure. This is problematic with Klebsiella pneumoniae because genes outside the main rfb (O-antigen biosynthesis) locus can have profound effects on the final structure. Here, we report two new loci encoding enzymes that modify a conserved polysaccharide backbone comprising disaccharide repeat units [→3)-α-d-Galp-(1→3)-ß-d-Galf-(1→] (O2a antigen). We identified in serotype O2aeh a three-component system that modifies completed O2a glycan in the periplasm by adding 1,2-linked α-Galp side-group residues. In serotype O2ac, a polysaccharide comprising disaccharide repeat units [→5)-ß-d-Galf-(1→3)-ß-d-GlcpNAc-(1→] (O2c antigen) is attached to the non-reducing termini of O2a-antigen chains. O2c-polysaccharide synthesis is dependent on a locus encoding three glycosyltransferase enzymes. The authentic O2aeh and O2c antigens were recapitulated in recombinant Escherichia coli hosts to establish the essential gene set for their synthesis. These findings now provide a complete understanding of the molecular genetic basis for the known variations in Klebsiella O-antigen carbohydrate structures based on the O2a backbone.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Antígenos O , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Configuração de Carboidratos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Antígenos O/biossíntese , Antígenos O/química , Antígenos O/genética , Coelhos
2.
Food Drug Law J ; 64(3): 473-501, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19999640

RESUMO

Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.


Assuntos
Animais Geneticamente Modificados , Clonagem de Organismos/legislação & jurisprudência , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Indústria Alimentícia/legislação & jurisprudência , Rotulagem de Alimentos/legislação & jurisprudência , Abastecimento de Alimentos/legislação & jurisprudência , Legislação sobre Alimentos , Animais , Clonagem de Organismos/efeitos adversos , Clonagem de Organismos/ética , Clonagem de Organismos/métodos , Comportamento do Consumidor , Epigênese Genética , Alimentos/efeitos adversos , Alimentos/classificação , Cadeia Alimentar , Indústria Alimentícia/ética , Abastecimento de Alimentos/classificação , Abastecimento de Alimentos/ética , Regulamentação Governamental/história , História do Século XIX , História do Século XX , Humanos , Medição de Risco , Estados Unidos , United States Food and Drug Administration/história , United States Food and Drug Administration/legislação & jurisprudência
3.
J Biol Chem ; 278(44): 43014-9, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12939274

RESUMO

Many hormones activate transcription by raising the level of cAMP within cells. In one well studied pathway, cAMP induces protein kinase A to phosphorylate the transcription factor CREB, which binds to a consensus sequence, the cAMP-regulated enhancer, found in many target genes. A generally accepted model suggests that phosphorylated CREB recruits the histone acetyltransferase CBP to activate transcription. In contrast, histone deacetylases have been linked to the cessation of CREB-dependent transcription. Here we tested this model in the regulation of endogenous CREB target genes. We used a constitutively active CREB mutant and microarray analysis to identify target genes in PC12 cells. We then tested the role of histone deacetylase activity in cAMP activation of four of these genes (c-FOS, ICER, NOR-1, and NUR77) by treating cells with the histone deacetylase inhibitor trichostatin A. Consistent with the generally accepted model, trichostatin A enhanced activation of c-FOS and NUR77 by cAMP. Surprisingly, trichostatin A blocked activation of ICER and NOR-1. The block of ICER and NOR-1 activation persisted in the presence of cycloheximide, indicating that the trichostatin A effect did not depend on new protein synthesis. This unexpected role of histone deacetylases in transcriptional activation of certain endogenous CREB target genes was not apparent in transfected reporter genes. Chromatin immunoprecipitation analysis indicated that the differential roles of histone deacetylases in activating or repressing CREB target genes was manifested at the level of preinitiation complex recruitment. These data indicate that histone deacetylases differentially regulate CREB target genes by contributing to either activation or cessation of transcription.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas , Proteínas Repressoras , Acetiltransferases/metabolismo , Animais , Cromatina/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico , Cicloeximida/farmacologia , Elementos Facilitadores Genéticos , Genes Reporter , Histona Acetiltransferases , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Células PC12 , Fosforilação , Testes de Precipitina , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA