Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 146(5): 052821, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178843

RESUMO

Atomic-layer-deposited La2O3 films were grown on Si with different O3 pulse times and growth temperatures. The interfacial reactions and impurity behaviors were observed using in situ X-ray photoelectron spectroscopy. Longer pulse time of O3 formed the solid SiO2 interfacial barrier layer, which suppressed La-silicate formation. Meanwhile, the carboxyl compound acting as an impurity phase was replaced with LaCO3 on increasing the O3 pulse time due to further oxidation and reaction of La. Higher growth temperatures enhanced La-silicate formation by mixed diffusion of Si and La2O3, during which most of the La2O3 phase was consumed at 400 °C. C and N impurities decreased with increasing growth temperature and completely disappear at 400 °C.

2.
J Nanosci Nanotechnol ; 11(8): 7322-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103187

RESUMO

The applicability of atomic layer deposition (ALD) process to the carbon microelectromechanical system technology was studied for a surface modification method of the carbon post electrodes. A conformal coating of the ALD-ZnO film was successfully demonstrated on the carbon post arrays which were fabricated by the traditional photolithography and subsequent two-step pyrolysis. A significant Zn diffusion into the underlying carbon posts was observed during the ALD process. The addition of a sputter-deposited ZnO interfacial layer efficiently blocked the Zn diffusion without altering the microstructure and surface morphology of the ALD-ZnO film.

3.
Sci Rep ; 9(1): 6914, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061512

RESUMO

Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0 ± 5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.

4.
ACS Appl Mater Interfaces ; 10(16): 14116-14123, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29551067

RESUMO

In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSi2Cl5), was investigated for the growth of silicon nitride (SiN x) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (Si2Cl6), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN x films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN x films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN x using PCDS on the surface terminated with amine groups (-NH2 and -NH-) are proposed. The PEALD SiN x films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm2 at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.

5.
ACS Appl Mater Interfaces ; 10(51): 44825-44833, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485061

RESUMO

Correlations between physical properties linking film quality with wet etch rate (WER), one of the leading figures of merit, in plasma-enhanced atomic layer deposition (PEALD) grown silicon nitride (SiN x) films remain largely unresearched. Achieving a low WER of a SiN x film is especially significant in its use as an etch stopper for technology beyond 7 nm node semiconductor processing. Herein, we explore the correlation between the hydrogen concentration, hydrogen bonding states, bulk film density, residual impurity concentration, and the WERs of PEALD SiN x using Fourier transform infrared spectrometry, X-ray reflectivity, and spectroscopic ellipsometry, etc. PEALD SiN x films for this study were deposited using hexachlorodisilane and hollow cathode plasma source under a range of process temperatures (270-360 °C) and plasma gas compositions (N2/NH3 or Ar/NH3) to understand the influence of hydrogen concentration, hydrogen bonding states, bulk film density, and residual impurity concentration on the WER. Varying hydrogen concentration and differences in the hydrogen bonding states resulted in different bulk film densities and, accordingly, a variation in WER. We observe a linear relationship between hydrogen bonding concentration and WER as well as a reciprocal relationship between bulk film density and WER. Analogous to the PECVD SiN x processes, a reduction in hydrogen bonding concentration arises from either (1) thermal activation or (2) plasma excited species. However, unlike the case with silane (SiH4)-based PECVD SiN x, PEALD SiN x WERs are affected by residual impurities of Si precursors (i.e., chlorine impurity). Thus, possible wet etching mechanisms in HF in which the WER is affected by hydrogen bonding states or residual impurities are proposed. The shifts of amine basicity in SiN x due to different hydrogen bonding states and the changes in Si electrophilicity due to Cl impurity content are suggested as the main mechanisms that influence WER in the PEALD processes.

6.
Sci Rep ; 7(1): 9769, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852035

RESUMO

We studied the impact of H2 pressure during post-metallization annealing on the chemical composition of a HfO2/Al2O3 gate stack on a HCl wet-cleaned In0.53Ga0.47As substrate by comparing the forming gas annealing (at atmospheric pressure with a H2 partial pressure of 0.04 bar) and H2 high-pressure annealing (H2-HPA at 30 bar) methods. In addition, the effectiveness of H2-HPA on the passivation of the interface states was compared for both p- and n-type In0.53Ga0.47As substrates. The decomposition of the interface oxide and the subsequent out-diffusion of In and Ga atoms toward the high-k film became more significant with increasing H2 pressure. Moreover, the increase in the H2 pressure significantly improved the capacitance‒voltage characteristics, and its effect was more pronounced on the p-type In0.53Ga0.47As substrate. However, the H2-HPA induced an increase in the leakage current, probably because of the out-diffusion and incorporation of In/Ga atoms within the high-k stack.

7.
Materials (Basel) ; 9(12)2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-28774125

RESUMO

With the continued miniaturization of devices in the semiconductor industry, atomic layer deposition (ALD) of silicon nitride thin films (SiNx) has attracted great interest due to the inherent benefits of this process compared to other silicon nitride thin film deposition techniques. These benefits include not only high conformality and atomic-scale thickness control, but also low deposition temperatures. Over the past 20 years, recognition of the remarkable features of SiNx ALD, reinforced by experimental and theoretical investigations of the underlying surface reaction mechanism, has contributed to the development and widespread use of ALD SiNx thin films in both laboratory studies and industrial applications. Such recognition has spurred ever-increasing opportunities for the applications of the SiNx ALD technique in various arenas. Nevertheless, this technique still faces a number of challenges, which should be addressed through a collaborative effort between academia and industry. It is expected that the SiNx ALD will be further perceived as an indispensable technique for scaling next-generation ultra-large-scale integration (ULSI) technology. In this review, the authors examine the current research progress, challenges and future prospects of the SiNx ALD technique.

8.
ACS Appl Mater Interfaces ; 6(13): 10482-8, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24911531

RESUMO

We investigated ZnO surface passivation of a GaAs (100) substrate using an atomic layer deposition (ALD) process to prepare an ultrathin ZnO layer prior to ALD-HfO2 gate dielectric deposition. Significant suppression of both Ga-O bond formation near the interface and As segregation at the interface was achieved. In addition, this method effectively suppressed the trapping of carriers in oxide defects with energies near the valence band edge of GaAs. According to electrical analyses of the interface state response on p- and n-type GaAs substrates, the interface states in the bottom half of the GaAs band gap were largely removed. However, the interface trap response in the top half of the band gap increased somewhat for the ZnO-passivated surface.

9.
ACS Appl Mater Interfaces ; 5(10): 4195-201, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23611632

RESUMO

The high-k gate dielectric structures in stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) forms with a similar apparent accumulation capacitance were atomic-layer-deposited on n-type In0.53Ga0.47As substrates, and their electrical properties were investigated in comparison with a single-layered HfO2 film. Al-oxide interface passivation in both forms proved to be effective in preventing a significant In incorporation in the high-k film and reducing the interface state density. The measured valence band spectra in combination with the reflection electron energy loss spectra were used to extract the energy band parameters of various dielectric structures on In0.53Ga0.47As. A further decrease in the interface state density was achieved in the stacked structure than in the nanolaminated structure. However, in terms of the other electrical properties, the nanolaminated sample exhibited better characteristics than the stacked sample, with a smaller border trap density and lower leakage current under substrate injection conditions with and without voltage stressing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA