Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
2.
Environ Pollut ; 357: 124424, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909773

RESUMO

Domestic wastewater is a significant reservoir of antibiotic resistance genes, which pose environmental and public health risks. We aimed to define an antibiotic resistome signature, represented by core genes, i.e., shared by ≥ 90% of the metagenomes of each of three conceptual environmental compartments - wastewater (influent, sludge, effluent), freshwater, and agricultural soil. The definition of resistome signatures would support the proposal of a framework for monitoring treatment efficacy and assessing the impact of treated wastewater discharge into the environment, such as freshwater and agricultural soil. Metagenomic data from 163 samples originating from wastewater (n = 81), freshwater (n = 58), and agricultural soils (n = 24) across different regions (29 countries, 5 continents), were analysed regarding antibiotic resistance diversity, based on annotation against a database that merged CARD and ResFinder databases. The relative abundance of the total antibiotic resistance genes (corresponding to the ratio between the antibiotic resistance genes and total reads number) was not statistically different between raw and treated wastewater, being significantly higher than in freshwater or agricultural soils. The latter had the significantly lowest relative abundance of antibiotic resistance genes. Genes conferring resistance to aminoglycosides, beta-lactams, and tetracyclines were among the most abundant in wastewater environments, while multidrug resistance was equally distributed across all environments. The wastewater resistome signature included 27 antibiotic resistance genes that were detected in at least 90% of the wastewater resistomes, and that were not frequent in freshwater or agricultural soil resistomes. Among these were genes responsible for resistance to tetracyclines (n = 8), macrolide-lincosamide-streptogramin B (n = 7), aminoglycosides (n = 4), beta-lactams (n = 3), multidrug (n = 2), sulphonamides (n = 2), and polypeptides (n = 1). This comprehensive assessment provides valuable insights into the dynamics of antibiotic resistance in urban wastewater systems and their potential ecological implications in diverse environmental settings. Furthermore, provides guidance for the implementation of One Health monitoring approaches.


Assuntos
Antibacterianos , Águas Residuárias , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental/métodos , Água Doce/microbiologia , Microbiologia do Solo , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA