Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21497, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513694

RESUMO

Hydrogenated amorphous silicon (a-Si: H) has received great attention for rich fundamental physics and potentially inexpensive solar cells. Here, we observe new resonant excitons and correlated plasmons tunable via hydrogen content in a-Si: H films on Indium Tin Oxide (ITO) substrate. Spectroscopic ellipsometry supported with High Resolution-Transmission Electron Microscopy (HR-TEM) is used to probe optical properties and the density of electronic states in the various crystallinity from nano-size crystals to amorphous a-Si: H films. The observed optical and electronic structures are analyzed by the second derivative with analytic critical-point line shapes. The complex dielectric function shows good agreement with microscopic calculations for the energy shift and the broadening inter-band transitions based on the electron-hole interaction. Interestingly, we observe an unusual spectral weight transfer over a broad energy range revealing electronic correlations that cause a drastic change in the charge carrier density and determine the photovoltaic performance. Furthermore, the interplay of resonant excitons and correlated plasmons is discussed in term of a correlated plexciton. Our result shows the important role of hydrogen in determining the coupling of excitons and plasmons in a-Si: H film for photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA