Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(25): 255502, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639793

RESUMO

The counterintuitive phenomenon of pressure-induced softening in materials is likely to be caused by the same dynamical behavior that produces negative thermal expansion. Through a combination of molecular dynamics simulation on an idealized model and neutron diffraction at variable temperature and pressure, we show the existence of extraordinary and unprecedented pressure-induced softening in the negative thermal expansion material scandium fluoride ScF_{3}. The pressure derivative of the bulk modulus B, B^{'}=(∂B/∂P)_{P=0}, reaches values as low as -220±30 at 50 K, and is constant at -50 between 150 and 250 K.

2.
Philos Trans A Math Phys Eng Sci ; 377(2149): 20180227, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31130096

RESUMO

The hybrid perovskites are coordination frameworks with the same topology as the inorganic perovskites, but with properties driven by different chemistry, including host-framework hydrogen bonding. Like the inorganic perovskites, these materials exhibit many different phases, including structures with potentially exploitable functionality. However, their phase transformations under pressure are more complex and less well understood. We have studied the structures of manganese and cobalt guanidinium formate under pressure using single-crystal X-ray and powder neutron diffraction. Under pressure, these materials transform to a rhombohedral phase isostructural to cadmium guanidinium formate. This transformation accommodates the reduced cell volume while preserving the perovskite topology of the framework. Using density-functional theory calculations, we show that this behaviour is a consequence of the hydrogen-bonded network of guanidinium ions, which act as struts protecting the metal formate framework against compression within their plane. Our results demonstrate more generally that identifying suitable host-guest hydrogen-bonding geometries may provide a route to engineering hybrid perovskite phases with desirable crystal structures. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

3.
Dalton Trans ; 52(13): 3971-3980, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36880672

RESUMO

We describe the synthesis, crystal structure and semiconducting properties of a number of hexacyanidometallates with the formula A2[MFe(CN)6]·xH2O (A = Na, K; M = Mg, Ca, Sr and Ba). All crystal structures were studied via single-crystal or powder X-ray diffraction. The unexpectedly low-symmetric structures in these ferrocyanides are described and contrasted with analogous transition-metal compounds which have been reported to be strictly or nearly cubic. The amount of crystal water in the structure for powder samples was determined by the thermogravimetric analysis (TGA), supported by IR and Raman spectroscopy. Electronic-structure calculations of K2[MgFe(CN)6] and K2[CaFe(CN)6] are compared with experimental UV-Vis measurements. The large band gaps by advanced theory indicate that the smaller experimental band gaps are due to surface effects of impurity states. Mott-Schottky curves of K2[MgFe(CN)6], K2[CaFe(CN)6] and K2[BaFe(CN)6]·3H2O exhibit positive slopes, which characterizes these compounds as n-type semiconductors.

4.
J Phys Condens Matter ; 34(29)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35483339

RESUMO

The orientational disorder in crystalline sulfur hexafluoride, SF6, has been studied using a combination of neutron total scattering and the reverse Monte Carlo method. Analysis of the atomic configurations has shown the extent of the disorder through the evaluation of the S-F bond orientational distribution function, consistent with, but improving upon, the results of earlier neutron powder diffraction data. The correlations between orientations of neighbouring molecules have been studied through analysis of the distributions of F-F distances, showing that nearest-neighbour F-F close contacts are avoided, consistent with previous molecular dynamics simulation results. The results present a new case study of the application of neutron total scattering and the reverse Monte Carlo methods for the study of orientational disorder, where in this instance the disorder arises from orientational frustration rather than from a mismatch of molecular and site symmetries.

5.
J Phys Condens Matter ; 34(1)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34619662

RESUMO

We report a study of the orientational order and phase transitions in crystalline deuterated methane, carried out using neutron total scattering and the reverse Monte Carlo method. The resultant atomic configurations are consistent with the average structures obtained from Rietveld refinement of the powder diffraction data, but additionally enable us to determine the C-D bond orientational distribution functions (ODF) for the disordered molecules in the high-temperature phase, and for both ordered and disordered molecules in the intermediate-temperature phase. We show that this approach gives more accurate information than can been obtained from fitting a bond ODF to diffraction data. Given the resurgence of interest in orientationally-disordered crystals, we argue that the approach of total scattering with the RMC method provides a unique quantification of orientational order and disorder.

6.
Chem Commun (Camb) ; 56(79): 11791-11794, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021277

RESUMO

Reorientation of organic cations in the cubic interstices of cyanoelpasolite molecular perovskites results in a variety of structural phase transitions, but far less is known about these cations' dynamics. We report quasielastic neutron scattering from the materials (C3H5N2)2K[MIII(CN)6], M = Fe,Co, which is directly sensitive to the rotation of the imidazolium ion. The motion is well described by a circular three-site hopping model, with the ion rotating within its plane in the intermediate-temperature phase, but tilting permanently in the high-temperature phase. Thus the two rhombohedral phases, which are crystallographically rather similar, have markedly different dynamics. The activation energy of rotation is about 10 kJ mol-1 and the barrier between orientations is 6 kJ mol-1. Our results explain two anomalous features in these materials' dielectric constants.

7.
J Phys Condens Matter ; 32(37): 374014, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32330906

RESUMO

Orientational disorder of the molecular [Formula: see text] anions in BaCO3, which occurs naturally as the mineral witherite, has been studied using a combination of neutron total scattering analysed by the reverse Monte Carlo method and molecular dynamics simulations. The primary focus is on the phase transition to the cubic phase, which assumes a rocksalt structure (Strukturbericht type B1) with highly disordered orientations consistent with the mismatch between the site ([Formula: see text]) and molecular (3/m) symmetries. Both experiment and simulation show a high degree of disorder, with the C-O bond orientation distribution never exceeding 25% variation from that of a completely uniform distribution, although there are differences between the two methods regarding the nature of these variations. Molecular dynamics simulations are also reported for the analogous phase transitions in the very important mineral calcite, CaCO3. The combination of the simulations and comparison with BaCO3 shows that the properties of calcite at all temperatures within its stability field are affected mostly by the onset of orientational disorder associated with the high-temperature cubic phase, even though this lies outside the stability field of calcite. This is a new understanding of calcite, which previously had been interpreted purely in terms of the phase transition to an intermediate partially-disordered phase. Finally, we also found that witherite itself appears to support the development of orientational disorder on heating, with the simulations showing a sequence of phase transitions that explain the much larger thermal expansion of one axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA