Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175750

RESUMO

In this study, based on the OneKP database and through comparative genetic analysis, we found that HMT and HDM may originate from Chromista and are highly conserved in green plants, and that during the evolution from algae to land plants, histone methylation modifications gradually became complex and diverse, which is more conducive to the adaptation of plants to complex and variable environments. We also characterized the number of members, genetic similarity, and phylogeny of HMT and HDM families in barley using the barley pangenome and the Tibetan Lasa Goumang genome. The results showed that HMT and HDM were highly conserved in the domestication of barley, but there were some differences in the Lasa Goumang SDG subfamily. Expression analysis showed that HvHMTs and HvHDMs were highly expressed in specific tissues and had complex expression patterns under multiple stress treatments. In summary, the amplification and variation of HMT and HDM facilitate plant adaptation to complex terrestrial environments, while they are highly conserved in barley and play an important role in barley growth and development with abiotic stresses. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant HvHMTs and HvHDMs, and lay a foundation for further investigation of their functions in barley.


Assuntos
Hordeum , Humanos , Hordeum/metabolismo , Histonas/genética , Histonas/metabolismo , Metilação , Plantas/metabolismo , Filogenia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
2.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298358

RESUMO

Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is highly important for accelerating research on rice heat tolerance. Here, we observed the seedling characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different durations of 42 °C heat stress. The dynamic transcriptomic changes of the two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional annotation and cluster analysis of differentially expressed genes at different stress times indicate that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable information for short-term thermotolerance response mechanisms active at the rice seedling stage and lays a foundation for breeding thermotolerant varieties via molecular breeding.


Assuntos
Oryza , Transcriptoma , Oryza/metabolismo , Reprodutibilidade dos Testes , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plântula/genética
3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834249

RESUMO

High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.


Assuntos
Oryza , Humanos , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Prolina/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050518

RESUMO

High temperature at anthesis is one of the most serious stress factors for rice (Oryza sativa L.) production, causing irreversible yield losses and reduces grain quality. Illustration of thermotolerance mechanism is of great importance to accelerate rice breeding aimed at thermotolerance improvement. Here, we identified a new thermotolerant germplasm, SDWG005. Microscopical analysis found that stable anther structure of SDWG005 under stress may contribute to its thermotolerance. Dynamic transcriptomic analysis totally identified 3559 differentially expressed genes (DEGs) in SDWG005 anthers at anthesis under heat treatments, including 477, 869, 2335, and 2210 for 1, 2, 6, and 12 h, respectively; however, only 131 were regulated across all four-time-points. The DEGs were divided into nine clusters according to their expressions in these heat treatments. Further analysis indicated that some main gene categories involved in heat-response of SDWG005 anthers, such as transcription factors, nucleic acid and protein metabolisms related genes, etc. Comparison with previous studies indicates that a core gene-set may exist for thermotolerance mechanism. Expression and polymorphic analysis of agmatine-coumarin-acyltransferase gene OsACT in different accessions suggested that it may involve in SDWG005 thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis, and also lays foundation for breeding thermotolerant varieties via molecular breeding.


Assuntos
Oryza/genética , Termotolerância , Transcriptoma , Acetiltransferases/genética , Acetiltransferases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Front Plant Sci ; 13: 878420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646033

RESUMO

Ionizing radiation (IR) is an effective approach for mutation breeding. Understanding the mutagenesis and transcriptional profiles induced by different mutagens is of great significance for improving mutation breeding efficiency. Here, using RNA sequencing and methylation-sensitive amplification polymorphism (MSAP) approaches, we compared the genetic variations, epigenetics, and transcriptional responses induced by the mixed high-energy particle field (CR) and 7Li-ion beam (LR) radiation in M1 seedlings of two wheat genotypes (Yangmai 18 and Yangmai 20). The results showed that, in both wheat genotypes, CR displayed significantly a higher mutation efficiency (1.79 × 10-6/bp) than that by LR (1.56 × 10-6/bp). The induced mutations were not evenly distributed across chromosomes and varied across wheat genotypes. In Y18 M1, the highest number of mutations were detected on Chr. 6B and Chr. 6D, whilst in Y20 M1, Chr. 7A and Chr. 3A had the highest mutations. The transcript results showed that total of 4,755 CR-regulated and 1,054 LR-regulated differentially expressed genes (DEGs) were identified in the both genotypes. Gene function enrichment analysis of DEGs showed that these DEGs overlapped or diverged in the cascades of molecular networks involved in "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways. Moreover, IR type specific responses were observed between CR an LR irradiation, including specific TFs and response pathways. MSAP analysis showed that DNA methylation level increased in LR treatment, while decreased at CR. The proportion of hypermethylation was higher than that of hypomethylation at LR, whereas a reverse pattern was observed at CR, indicating that DNA methylation plays critical roles in response to IR irradiation. All these results support that the response to different IRs in wheat includes both common and unique pathways, which can be served as a useful resource to better understand the mechanisms of responses to different IRs in other plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA