Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Clin Oncol ; 27(9): 1487-1498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35763227

RESUMO

BACKGROUND: Local recurrence of primary retroperitoneal sarcoma (RPS) is one of the major causes of treatment failure and death. We attempted to assess the effects of time to local recurrence (TLR) on the survival after recurrence (SAR) and overall survival (OS) of RPS. METHODS: Included in this study were 224 patients who underwent R0 resection for primary RPS at our institution between January 2000 and December 2020, 118 of whom had local recurrence. Based on the median TLR (19.8 months), patients were divided into two groups: early local recurrence (ELR < 20 months) and late local recurrence (LLR > 20 months). The Kaplan-Meier method was employed to calculate the local recurrence-free survival (LRFS), SAR and OS. Univariate and multivariate analyses were conducted to explore the prognostic value of TLR. RESULTS: The median follow-up time was 60.5 months for the entire cohort and 58.5 months for the recurrence cohort. There were 60 (50.8%) patients in the ELR group and 58 (49.2%) in the LLR group. The ELR group exhibited a worse SAR (29.2 months vs. 73.4 months, P < 0.001), OS (41.8 months vs. 120.9 months, P < 0.001), and a lower 5-year OS rate (35.9% vs. 73.2%, P = 0.004) than the LLR group. Furthermore, multivariate analysis indicated that TLR was an independent prognostic indicator for SAR (P = 0.014) and OS (P < 0.001). CONCLUSIONS: In patients with RPS, ELR after R0 resection presents adverse effects on OS and SAR than those with LLR, and TLR could serve as a promising predictor for OS and SAR.


Assuntos
Neoplasias Retroperitoneais , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Recidiva , Estudos Retrospectivos , Sarcoma/cirurgia , Taxa de Sobrevida
2.
Anticancer Drugs ; 29(3): 253-261, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29346131

RESUMO

Fibroblast activation protein-α (FAPα) is a promising tumor-associated target expressed by reactive stromal fibroblasts in tumor tissue. FAPα has a postprolyl peptidase activity and can specifically cleave N-terminal benzyloxycarbonyl (Z)-blocked peptides, such as the substrate Z-Gly-Pro-AMC. Doxorubicin (DOX) is an effective antitumor drug, but its application is greatly limited by toxic adverse effects owing to poor tumor selectivity. Based on these facts, we previously designed a FAPα-targeting prodrug of doxorubicin (FTPD) which can be selectively hydrolyzed by FAPα. FTPD can retain potent antitumor efficacy and has favorable tumor targeting. The present study aimed to further evaluate the toxicological profile and the safety pharmacological property of FTPD in vitro and in vivo. The cytotoxicity assay showed that FTPD displayed markedly lower cytotoxicity to 3T3 cells and HEK-293 cells compared with DOX. In the short-term toxicity study, mice treated with 25 mg/kg of FTPD showed no obvious change in the appearance and general behavior, and no case of mortality was observed within 14 days. Unlike DOX, FTPD exhibited reduced toxicity to heart, liver, kidney, spleen as well as peripheral white blood cells in mice. Moreover, open file test and general pharmacology study were also conducted correspondingly in mice and beagle dogs. It was found that FTPD may not produce significant pharmacological effects on spontaneous locomotor activity and cardiovascular-respiratory system except for a transient decreasing in systolic blood pressure. Taken together, the results of this work suggest that FTPD has more favorable toxicological profile and better drug safety compared with its parent drug DOX.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/toxicidade , Gelatinases/administração & dosagem , Gelatinases/toxicidade , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/toxicidade , Pró-Fármacos/administração & dosagem , Pró-Fármacos/toxicidade , Serina Endopeptidases/administração & dosagem , Serina Endopeptidases/toxicidade , Células 3T3 , Animais , Cães , Endopeptidases , Feminino , Células HEK293 , Humanos , Masculino , Camundongos
3.
J Cell Mol Med ; 21(5): 860-870, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28165192

RESUMO

Natural killer (NK) cells play an important role in preventing cancer development. NK group 2 member D (NKG2D) is an activating receptor expressed in the membrane of NK cells. Tumour cells expressing NKG2DL become susceptible to an immune-dependent rejection mainly mediated by NK cells. The paradoxical roles of transforming growth factor beta (TGF-ß) in regulation of NKG2DL are presented in many studies, but the mechanism is unclear. In this study, we showed that TGF-ß up-regulated the expression of NKG2DLs in both PC3 and HepG2 cells. The up-regulation of NKG2DLs was characterized by increasing the expression of UL16-binding proteins (ULBPs) 1 and 2. TGF-ß treatment also increased the expression of transcription factor SP1. Knockdown of SP1 significantly attenuated TGF-ß-induced up-regulation of NKG2DLs in PC3 and HepG2 cells, suggesting that SP1 plays a key role in TGF-ß-induced up-regulation of NKG2DLs. TGF-ß treatment rapidly increased SP1 protein expression while not mRNA level. It might be due to that TGF-ß can elevate SP1 stability by activating PI3K/AKT signalling pathway, subsequently inhibiting GSK-3ß activity and decreasing the association between SP1 and GSK-3ß. Knockdown of GSK-3ß further verified our findings. Taken together, these results revealed that AKT/GSK-3ß-mediated stabilization of SP1 is required for TGF-ß induced up-regulation of NKG2DLs. Our study provided valuable evidence for exploring the tumour immune modulation function of TGF-ß.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos , Células Hep G2 , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Cancer Immunol Immunother ; 66(3): 355-366, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915371

RESUMO

Myeloid-derived suppressor cells (MDSC) have been identified as a population of immature myeloid cells that suppress anti-tumor immunity. MDSC are increased in tumor-bearing hosts; thus, depletion of MDSC may enhance anti-tumor immunity. Histone deacetylase inhibitors (HDACi) are chemical agents that are primarily used against hematologic malignancies. The ability of these agents to modulate anticancer immunity has recently been extensively studied. However, the effect of HDACi on MDSC has remained largely unexplored. In the present study, we provide the first demonstration that HDACi treatment decreases MDSC accumulation in the spleen, blood and tumor bed but increases the proportion of T cells (particularly the frequency of IFN-γ- or perforin-producing CD8+ T cells) in BALB/C mice with 4T1 mammary tumors. In addition, HDACi exposure of bone marrow (BM) cells significantly eliminated the MDSC population induced by GM-CSF or the tumor burden in vitro, which was further demonstrated as functionally important to relieve the inhibitory effect of MDSC-enriched BM cells on T cell proliferation. Mechanistically, HDACi increased the apoptosis of Gr-1+ cells (almost MDSC) compared with that of Gr-1- cells, which was abrogated by the ROS scavenger N-acetylcysteine, suggesting that the HDACi-induced increase in MDSC apoptosis due to increased intracellular ROS might partially account for the observed depletion of MDSC. These findings suggest that the elimination of MDSC using an HDACi may contribute to the overall anti-tumor properties of these agents, highlighting a novel property of HDACi as potent MDSC-targeting agents, which may be used to enhance the efficacy of immunotherapeutic regimens.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia
5.
Biochem Biophys Res Commun ; 478(2): 710-5, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498029

RESUMO

Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Asclepias/química , Cardenolídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/genética , Proteína Quinase CDC2 , Cardenolídeos/isolamento & purificação , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Cisplatino/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
6.
Arch Biochem Biophys ; 608: 34-41, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27592306

RESUMO

Nodal is a member of transforming growth factor beta (TGF-ß) superfamily. Nodal promotes the self-renewal of human cancer stem cells (CSCs) and triggers carcinogenesis of human cancers via an autocrine manner through Smad2/3 pathway. In our study, generation of Nodal-overexpressed cancer cells was constructed, and the effect of Nodal on the stem cell marker Oct-4 was evaluated by overexpression or blocked Nodal/ALKs signaling pathway in non-small cell lung cancer cells A549 and prostate cancer cells PC3. Functionally, Nodal also increased the proliferation via the ß-catenin nuclear translocation. This increase was attributed to GSK-3ß dephosphorylating, and activin receptor-like kinase 4/7 (ALK4/7) played a major role in human cancer cells. Our study provides a positive understanding of Nodal function in cancer cells and suggests a potential novel target for clinical therapeutic research.


Assuntos
Transporte Ativo do Núcleo Celular , Regulação Neoplásica da Expressão Gênica , Proteína Nodal/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Neoplasias da Próstata/metabolismo , beta Catenina/metabolismo , Células A549 , Receptores de Ativinas Tipo I/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Humanos , Masculino , Transdução de Sinais , Transfecção
7.
Proteomics ; 15(4): 773-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25411139

RESUMO

Macrophages are heterogeneous and plastic populations that are an essential component of inflammation and host defense. To understand how macrophages respond to cytokine signals, we used 2DE to identify protein profiles in macrophages stimulated with interleukin 4 (M2) and those stimulated with lipopolysaccharide and interferon γ (M1). In total, 32 differentially expressed proteins in THP-1 cells were identified by MALDI-TOF MS/MS analysis. The different proteins were mainly involved in cellular structure, protein metabolism, stress response, oxidative response, and nitric oxide production during macrophage polarization. In particular, proteins playing important roles in production of nitric oxide (NO) were downregulated in M2 macrophages. Many antioxidant and heat shock proteins, which are related to oxidative response, were upregulated in M2 macrophages. More importantly, a remarkable decrease in intracellular ROS and NO production were detected in M2 macrophages. Our results provide a proteomic profile of differentially polarized macrophages and validate the function of the identified proteins, which may indicate possible mechanism of macrophage polarization process.


Assuntos
Macrófagos/imunologia , Macrófagos/fisiologia , Proteoma/análise , Linhagem Celular , Eletroforese em Gel Bidimensional , Humanos , Modelos Imunológicos , Fenótipo , Proteoma/química , Proteômica
8.
Biochim Biophys Acta ; 1840(10): 3096-105, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088797

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of metastatic cancers. Basic fibroblast growth factor (bFGF) is significantly elevated in metastatic prostate cancers, which has been mentioned mainly to induce EMT in normal cells. However, there is no description about bFGF induced EMT and its underlying mechanism in prostate cancer cells. METHODS: Western blotting, immunofluorescence and qRT-PCR assays were used to study protein or mRNA expression profiles of the EMT. Wound healing scratch, migration and invasion assays were used to test the motility of cells undergoing EMT. More methods were used to explore the underlying mechanisms. RESULTS: We demonstrated that bFGF promoted EMT and motility of human prostate cancer PC-3 cells. Both protein and mRNA expression of Snail were rapidly increased after bFGF treatment. Ectopic expression of Snail triggered EMT and enhanced cell motility in PC-3 cells, and knockdown of Snail almost abolished bFGF induced EMT, suggesting the critical role of Snail. Mechanistic study demonstrated that bFGF promoted the stability, nuclear localization and transcription of Snail by inhibiting the activity of glycogen synthase kinase 3 beta (GSK-3ß) through phosphatidylinositide 3 kinases (PI3K)/protein kinase B (AKT) signaling pathway. CONCLUSIONS: It is concluded that bFGF can promote EMT and motility of PC-3 cells, and AKT/GSK-3ß signaling pathway controls the stability, localization and transcription of Snail which is crucial for this bFGF induced EMT. GENERAL SIGNIFICANCE: To our knowledge, this is the first study to demonstrate that bFGF can induce EMT via AKT/GSK-3ß/Snail signaling pathway in prostate cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Fator 2 de Crescimento de Fibroblastos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/biossíntese , Linhagem Celular Tumoral , Movimento Celular/genética , Fator 2 de Crescimento de Fibroblastos/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
9.
Eur J Immunol ; 44(1): 173-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114072

RESUMO

Nodal, a member of the TGF-ß superfamily, is an embryonic morphogen that is upregulated in different types of tumors. Nodal increases the tumorigenesis by inducing angiogenesis and promoting metastasis. Importantly, Nodal inhibition suppresses the growth and invasion of tumor. Since tumor-associated macrophages (TAMs) are the major infiltrating leukocytes in most cancers, we investigated whether Nodal is involved in the differentiation of TAMs. Our results revealed that Nodal inhibition in tumor microenvironment upregulated the production of IL-12 in macrophages and reversed TAMs to classically activated macrophage phenotype. In contrast, treatment with recombinant Nodal (rNodal) decreased the expression of IL-12 in murine macrophages. Furthermore, rNodal promoted macrophage polarization to an alternatively activated macrophage-like/TAM phenotype and modulated its function. These results suggest that Nodal may play an important role in macrophage polarization and downregulation of IL-12. The rescued antitumor function of TAMs via the inhibition of Nodal expression could be a new therapeutic strategy for cancer treatment.


Assuntos
Células da Medula Óssea/imunologia , Interleucina-12/metabolismo , Macrófagos/imunologia , Neoplasias/imunologia , Proteína Nodal/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Teste de Cultura Mista de Linfócitos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Proteína Nodal/genética , Proteína Nodal/imunologia , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Células Th2/imunologia
10.
Biochem Biophys Res Commun ; 456(1): 320-6, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25434997

RESUMO

Trichostatin A (TSA) is a kind of classical histone deacetylase (HDAC) inhibitor. In this study, we reported the reversal effects of TSA on EMT and investigated the possible involved molecular mechanisms in SW480 and PC3 cells. Firstly, we observed that TSA induced the reversal process of epithelial-mesenchymal transition (EMT) in SW480 and PC3 cells, resulting in attenuated cell invasion and migration abilities. TSA-induced EMT reversal was characterized by up-regulation of E-cadherin and down-regulation of Vimentin. Then, treatment with TSA also decreased the expression of transcription factor Slug. Furthermore, over-expression of Slug significantly caused down-regulation of E-cadherin and up-regulation of Vimentin. Meanwhile, TSA treatment in Slug-expressing cells could prevent these changes. These findings suggested that Slug played a crucial role in TSA-induced EMT reversal. Additionally, the study showed that TSA could induce the increase of HDAC1 and HDAC2 on the Slug gene promoter, which might be responsible for the suppression of Slug. Overall, TSA could reverse EMT in SW480 and PC3 cells and TSA-mediated down-regulation of Slug was involved in the reversal process.


Assuntos
Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias da Próstata/metabolismo , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Relação Dose-Resposta a Droga , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Masculino , Microscopia Confocal , Invasividade Neoplásica , Regiões Promotoras Genéticas , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA