Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0276321, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35946941

RESUMO

Mycobacterium abscessus is an emerging human pathogen leading to significant morbidity and even mortality, intrinsically resistant to almost all the antibiotics available and so can be a nightmare. Mechanisms of its intrinsic resistance remain not fully understood. Here, we selected and confirmed an M. abscessus transposon mutant that is hypersensitive to multiple drugs including rifampin, rifabutin, vancomycin, clofazimine, linezolid, imipenem, levofloxacin, cefoxitin, and clarithromycin. The gene MAB_0189c encoding a putative arabinosyltransferase C was found to be disrupted, using a newly developed highly-efficient strategy combining next-generation sequencing and multiple PCR. Furthermore, selectable marker-free deletion of MAB_0189c recapitulated the hypersensitive phenotype. Disruption of MAB_0189c resulted in an inability to synthesize lipoarabinomannan and markedly enhanced its cell envelope permeability. Complementing MAB_0189c or M. tuberculosis embC restored the resistance phenotype. Importantly, treatment of M. abscessus with ethambutol, a first-line antituberculosis drug targeting arabinosyltransferases of M. tuberculosis, largely sensitized M. abscessus to multiple antibiotics in vitro. We finally tested activities of six selected drugs using a murine model of sustained M. abscessus infection and found that linezolid, rifabutin, and imipenem were active against the MAB_0189c deletion strain. These results identified MAB_0189 as a crucial determinant of intrinsic resistance of M. abscessus, and optimizing inhibitors targeting MAB_0189 might be a strategy to disarm the intrinsic multiple antibiotic resistance of M. abscessus. IMPORTANCE Mycobacterium abscessus is intrinsically resistant to most antibiotics, and treatment of its infections is highly challenging. The mechanisms of its intrinsic resistance remain not fully understood. Here we found a transposon mutant hypersensitive to a variety of drugs and identified the transposon inserted into the MAB_0189c (orthologous embC coding arabinosyltransferase, EmbC) gene by using a newly developed rapid and efficient approach. We further verified that the MAB_0189c gene played a significant role in its intrinsic resistance by decreasing the cell envelope permeability through affecting the production of lipoarabinomannan in its cell envelope. Lastly, we found the arabinosyltransferases inhibitor, ethambutol, increased activities of nine selected drugs in vitro. Knockout of MAB_0189c made M. abscessus become susceptible to 3 drugs in mice. These findings indicated that potential powerful M. abscessus EmbC inhibitor might be used to reverse the intrinsic resistance of M. abscessus to multiple drugs.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Tuberculose , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etambutol/uso terapêutico , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Linezolida/uso terapêutico , Camundongos , Camundongos Knockout , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Pentosiltransferases , Permeabilidade , Rifabutina/farmacologia , Rifabutina/uso terapêutico
2.
J Glob Antimicrob Resist ; 22: 290-295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32142951

RESUMO

OBJECTIVES: Amikacin is the only second-line injectable antituberculosis (anti-TB) drug still recommended for multidrug-resistant tuberculosis (MDR-TB) treatment when a short MDR-TB regimen is designed. Mutations in rrs and eis are reported to be associated with resistance to amikacin. In this study, we investigated the incidence of rrs, eis, tap and whiB7 mutations in amikacin-resistant Mycobacterium tuberculosis clinical isolates to find the proportion of different mutations related to amikacin resistance. METHODS: A total of 395 clinical isolates of M. tuberculosis were used for phenotypic drug susceptibility testing (DST) to 10 drugs with the Löwenstein-Jensen (L-J) method. We sequenced rrs, eis, tap and whiB7 genes in 178 M. tuberculosis clinical isolates (89 amikacin-resistant isolates and 89 of 306 amikacin-susceptible isolates). RESULTS: Our data showed that 22.53% (89/395) M. tuberculosis clinical isolates were resistant to amikacin. Of the 89 amikacin-resistant isolates, 89.89% (80/89) were MDR-TB, of which 12.36% (11/89) were pre-extensively drug-resistant TB (pre-XDR-TB) and 77.53% (69/89) were XDR-TB. The rrs mutations were found in 82% (73/89) in amikacin-resistant M. tuberculosis clinical isolates. The A1401G alteration in the rrs gene was the most dominant mutation (80.90%; 72/89). Five mutations were detected as new in rrs, tap and whiB7. Notably, 13.48% (12/89) amikacin-resistant isolates had no known mutation in these genes. CONCLUSIONS: Our data reveal that the rrs mutation is a predominant molecular marker of amikacin resistance in southern China. Analysis of the rrs gene mutations will significantly reduce the time and cost to diagnose amikacin resistance in TB patients. Other unknown amikacin resistance mechanism(s) exist.


Assuntos
Mycobacterium tuberculosis , Amicacina/farmacologia , Capreomicina , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Canamicina , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Prevalência
3.
Microb Drug Resist ; 26(7): 766-775, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31976809

RESUMO

Streptomycin (STR) is the first antibiotic used in the treatment of tuberculosis (TB) and the earliest antituberculosis drug with acquired resistance developed by Mycobacterium tuberculosis. The high prevalence of such resistance in many parts of the world limits its use for treating multidrug-resistant (MDR) TB. The aims of this study are to characterize of mutations in rpsL, rrs, and gidB genes in MDR M. tuberculosis isolates originating from southern China and to investigate possible relationship between mutations and strain genotypes for precise diagnosis and treatment. Sequences of rpsL, rrs, and gidB genes and the resistance profiles were analyzed for 218 MDR M. tuberculosis isolates. Our study showed that 68.35% of MDR M. tuberculosis isolates were resistant to STR and 89.91% of STR-resistant (STRR) isolates were Beijing lineage strains. Mutations were observed in STRR MDR M. tuberculosis isolates at the following rates: 72.48% in rpsL, 36.91% in rrs, and 15.44% in gidB. Compared with the phenotypic data, the combination of mutations in rpsL, rrs, and gidB has sensitivity and specificity of 96.64% and 100.00%, respectively. The most common mutations in STRR isolates were rpsL128,263 and rrs514,1401, of which rpsL128 showed association with Beijing lineage (p < 0.001). It is noteworthy that a1401g mutation was present in rrs, while MDR M. tuberculosis isolates were resistant to both STR and amikacin. Twenty two novel mutations were found in STRR isolates. These findings could be helpful to develop rapid molecular diagnostic methods and understand STR resistance in China for developing TB precision medicine and disturbance of drug-resistant TB transmission.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Estreptomicina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , China/epidemiologia , Genes Bacterianos , Genótipo , Humanos , Testes de Sensibilidade Microbiana
4.
Biosens Bioelectron ; 165: 112396, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729517

RESUMO

Pseudomonas aeruginosa is an increasingly prevalent pathogen that has become a serious health concern due to an increasing incidence of multidrug-resistant (MDR) hospital-acquired infections. The emergence of MDR-P. aeruginosa coupled with shrinking antibiotic pipelines has increased the demand for new antimicrobials and therapeutics. An effective tool for drug screening both in vitro and in vivo can facilitate the discovery of drugs and regimens for treating P. aeruginosa infection. Here, for the first time, we combined the mini-Tn7 system and Xer/dif recombinase system to construct a stable and selectable marker-free autoluminescent P. aeruginosa (SfAlPa) by one step. Afterwards, in vitro and in vivo activities of several antibiotics including amikacin, biapenem, levofloxacin and polymyxin B were assessed using SfAlPa. This study demonstrated that the use of SfAlPa could significantly facilitate rapid real-time evaluating the activities of compounds. Compared to prevailing methods, this method reduces the time, effort, animals and costs consumed in the discovery of new drugs against P. aeruginosa. Additionally, the methodology described in this study could be easily modified for construction of selectable marker-free reporter strain in other Gram-negative bacteria.


Assuntos
Técnicas Biossensoriais , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Polimixina B , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA