Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202991

RESUMO

A miniaturized and low-cost electrochemical 3D-printed system for rapid and accurate quantification of ethanol content in ethanol fuel using electrochemical impedance spectroscopy (EIS) was developed. The monolithic design of the system incorporates insulating thermoplastic electrode separators, with only the cover being mobile, allowing for easy assembly and handling. The portable device, measuring approximately 26 × 24 mm, has a maximum capacity of 1 mL, making it suitable for lab-on-a-chip and portable analysis. By utilizing the dielectric constant of ethanol and ethanol fuel mixtures with water, the miniaturized EIS cell quantifies ethanol content effectively. To validate its performance, we compared measurements from four gas stations with a digital densimeter, and the values obtained from the proposed system matched perfectly. Our miniaturized and low-cost electrochemical 3D-printed device can be printed and assembled in two hours, offering a cost-effective solution for fast and precise ethanol quantification. Its versatility, affordability, and compatibility with lab-on-a-chip platforms make it easily applicable, including for fuel quality control and on-site analysis in remote locations.

2.
Appl Opt ; 61(22): 6590-6598, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255885

RESUMO

In this work, we evaluated the potential application of fluorescence spectroscopy, associated with the canonical polyadic/parallel factor analysis and principal component analysis, to monitor the dissolved organic matter (DOM) generated from a slaughterhouse industry. During the monitoring process, we analyzed the residual water at the entrance and exit sites of the slaughterhouse effluent treatment as well as downstream and upstream the effluent receiving water body of a local river. The results revealed that the fluorescence analysis was able to identify proteins, chlorophylls, and humic substances at the entrance and exit sites of the slaughterhouse treatment plant and humic substances at the river water bodies. Our data also demonstrated that the industrial effluent discharged into the river did not impact the receiving water body quality as determined by the biological and humification indices obtained by fluorescence analysis, which was confirmed by conventional physicochemical analysis. In summary, the present findings indicate that fluorescence spectroscopy, in association with multivariate analysis, can be successfully applied as an analytical tool for evaluating the quality of DOM in slaughterhouse wastewater.


Assuntos
Substâncias Húmicas , Águas Residuárias , Bovinos , Animais , Águas Residuárias/análise , Águas Residuárias/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Matéria Orgânica Dissolvida , Matadouros , Água
3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293386

RESUMO

Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan's structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.


Assuntos
Quitosana , Nanocompostos , Humanos , Quitosana/farmacologia , Quitosana/química , Espécies Reativas de Oxigênio/farmacologia , Staphylococcus aureus , Escherichia coli , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
4.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080466

RESUMO

This study reports curcumin as an efficient photolarvicide against Aedes aegypti larvae under natural light illumination. Larval mortality and pupal formation were monitored daily for 21 days under simulated field conditions. In a sucrose-containing formulation, a lethal time 50 (LT50) of 3 days was found using curcumin at 4.6 mg L-1. This formulation promoted no larval toxicity in the absence of illumination, and sucrose alone did not induce larval phototoxicity. The photodegradation byproducts (intermediates) of curcumin were determined and the photodegradation mechanisms proposed. Intermediates with m/z 194, 278, and 370 were found and characterized using LC-MS. The ecotoxicity of the byproducts on non-target organisms (Daphnia, fish, and green algae) indicates that the intermediates do not exhibit any destructive potential for aquatic organisms. The results of photodegradation and ecotoxicity suggest that curcumin is environmentally safe for non-target organisms and, therefore, can be considered for population control of Ae. aegypti.


Assuntos
Aedes , Curcumina , Inseticidas , Animais , Curcumina/farmacologia , Inseticidas/farmacologia , Larva , Fotólise , Sacarose , Luz Solar
5.
An Acad Bras Cienc ; 93(3): e20190739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909753

RESUMO

Nanotechnology is a field that, over the years, has been growing in several research areas, such as medicine, agriculture and cosmetics, among others. As a result, there is a continuous increase in the production, use and disposal of these materials in the environment. The behaviour and (bio) activity of these materials in the atmosphere, water and soil are not fully studied. Therefore, it is necessary to carry out an analysis of the risks of contamination, as well as the possible effects and impacts of nanoparticles (NPs) on the ecosystem. In an attempt to investigate these effects on plants, the present study aimed to investigate the impact of copper oxide nanoparticles (CuO NPs) on the seed germination process of Sesbania virgata. For this, the Sesbania virgata seeds were subjected to different concentration of CuO NPs (0, 100, 200, 300 and 400 mgL-1) and their germination and development were monitored by optical analysis (thermography and chlorophyll a fluorescence). The results show that the CuO NPs induced a reduction on the maximum emission of chlorophyll a, which was concentration-dependent. The data also showed that CuO NPs promoted an increase in the energy dissipated by non-photochemical pathways and the surface temperature of the seeds. Additionally, our findings revealed that CuO NPs caused a root growth inhibition. In summary, the present study demonstrates, for the first time, that CuO NPs can negatively affect the physiological status and development of the S. virgata plant, by altering the efficiency of the functioning of photosystem II in its initial developmental stage, depending on the concentration of CuO NPs.


Assuntos
Fabaceae , Nanopartículas , Sesbania , Clorofila A , Cobre/farmacologia , Ecossistema , Germinação , Óxidos
6.
Molecules ; 25(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003282

RESUMO

This study evaluates the photosensitizing effectiveness of sodium copper chlorophyllin, a natural green colorant commonly used as a food additive (E-141ii), to inactivate methicillin-sensitive and methicillin-resistant Staphylococcus aureus under red-light illumination. Antimicrobial photodynamic inactivation (aPDI) was tested on a methicillin-sensitive reference strain (ATCC 25923) and a methicillin-resistant Staphylococcus aureus strain (GenBank accession number Mh087437) isolated from a clinical sample. The photoinactivation efficacy was investigated by exposing the bacterial strains to different E-141ii concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 µM) and to red light (625 nm) at 30 J cm-2. The results showed that E-141ii itself did not prevent bacterial growth for all tested concentrations when cultures were placed in the dark. By contrast, E-141ii photoinactivated both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under red-light illumination. However, different dose responses were observed for MSSA and MRSA. Whilst the MSSA growth was inhibited to the detection limit of the method with E-141ii at 2.5 µM, >10 µM concentrations were required to inhibit the growth of MRSA. The data also suggest that E-141ii can produce reactive oxygen species (ROS) via Type I reaction by electron transfer from its first excited singlet state to oxygen molecules. Our findings demonstrate that the tested food colorant has great potential to be used in aPDI of MRSA.


Assuntos
Corantes de Alimentos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fotoquimioterapia , Corantes de Alimentos/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
7.
Molecules ; 25(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022905

RESUMO

The fruit of Caryocar brasiliense Cambess. is a source of oil with active compounds that are protective to the organism. In our work, we analyzed the physicochemical characteristics and evaluated the effects of supplementation with C. brasiliense oil in an animal model. We characterized the oil by indices of quality and identity, optical techniques of absorption spectroscopy in the UV-Vis region and fluorescence, and thermogravimetry/derived thermogravimetry (TG/DTG). For the animal experiment, we utilized mice (Mus musculus) supplemented with lipidic source in different dosages. The results demonstrated that C. brasiliense oil is an alternative source for human consumption and presents excellent oxidative stability. Primarily, it exhibited oleic MFA (53.56%) and palmitic SFA (37.78%). The oil level of tocopherols and tocotrienols was superior to the carotenoids. The supplementation with C. brasiliense oil reduced the levels of total cholesterol, LDL-c, and non-HDL-c. Regarding visceral fats and adiposity index, the treatment synergically supplemented with olive oil and C. brasiliense oil (OO + CO) obtained the best result. Therefore, C. brasiliense oil is a high quality product for consumption. Its supplementation promotes beneficial effects mainly on the lipidic profile.


Assuntos
LDL-Colesterol/metabolismo , Suplementos Nutricionais , Ericales/química , Lipoproteínas HDL/metabolismo , Óleos de Plantas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Condutividade Elétrica , Ácidos Graxos/análise , Masculino , Tamanho do Órgão/efeitos dos fármacos , Termogravimetria
8.
Ecotoxicol Environ Saf ; 180: 526-534, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31128550

RESUMO

With the continued increase of technological uses of cerium oxide nanoparticles (CeO2 NPs or nanoceria) and their unregulated disposal, the accumulation of nanoceria in the environment is inevitable. Concomitantly, atmospheric carbon dioxide (CO2) levels continue to rise, increasing the concentrations of bicarbonate ions in aquatic ecosystems. This study investigates the influence of CeO2 NPs (from 0 to 100 µgL-1) in the presence and absence of an elevated bicarbonate (HCO3-) ion concentration (1 mM), on vibrational biochemical parameters and photosystem II (PSII) activity in leaf discs of Salvinia auriculata. Fourier transform-infrared photoacoustic spectroscopy (FTIR-PAS) was capable of diagnostic use to understand biochemical and metabolic changes in leaves submitted to the CeO2 NPs and also detected interactive responses between CeO2 NPs and HCO3- exposure at the tissue level. The results showed that the higher CeO2 NPs levels in the presence of HCO3- increased the non-photochemical quenching (NPQ) and coefficient of photochemical quenching in dark (qPd) compared to the absence of HCO3. Moreover, the presence of HCO3- significantly decreased the NPQ at all levels of CeO2 NPs demonstrating that HCO3- exposure may change the non-radiative process involved in the operation of the photosynthetic apparatus. Overall, the results of this study are useful for providing baseline information on the interactive effects of CeO2 NPs and elevated HCO3- ion concentration on photosynthetic systems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dióxido de Carbono/análise , Cério/toxicidade , Clorofila A/metabolismo , Gleiquênias/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/metabolismo , Bicarbonatos/análise , Gleiquênias/metabolismo , Fluorometria , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766411

RESUMO

Interest in edible oil extraction processes is growing interest because the final nutritional quality of the extracted oil depends on the procedure used to obtain ir. In this context, a domestic cold oil press machine is a valuable tool that avoids the use of chemicals during oil extraction, in an environmentally friendly way. Although babassu (Attalea speciosa) oil is economically important in several Brazilian regions due to its nutritional and healthy features, few studies have been conducted on the chemical composition and stability of babassu oils extracted by cold pressing. Babassu oil's major constituents are saturated fatty acids (~86.42%), with the most prevalent fatty acids being lauric (~47.40%), myristic (15.64%), and oleic (~11.28%) acids, respectively, within the recommended range by Codex Alimentarius, presenting atherogenicity and thrombogenicity indexes favorable for human consumption. Peroxide value, Rancimat, and TGA/DSC results indicated that babassu oil is stable to oxidation. Also, macro- (Na, K, Ca, Mg, P) and micro-elements (Fe, Mn, Cr, Se, Al, and Zn) of babassu oil were determined, revealing levels below the tolerable upper intake level (ULs) for adults. These findings demonstrated that cold-press extraction using a domestic machine yielded a high-quality oil that kept oil chemical composition stable to oxidation with natural antioxidants.


Assuntos
Antioxidantes/análise , Arecaceae/química , Elementos Químicos , Ácidos Graxos/análise , Óleos de Plantas/análise , Óleos de Plantas/isolamento & purificação , Arecaceae/classificação , Manipulação de Alimentos , Humanos , Estresse Oxidativo , Óleos de Plantas/química , Sementes/química
10.
J Sci Food Agric ; 99(6): 2855-2864, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30450558

RESUMO

BACKGROUND: Fruits present high concentrations of bioactive compounds that are beneficial to health due to their antioxidant properties. New alternatives to vegetable oils with such properties have been studied. We determined the chemical compounds of Byrsonima cydoniifolia A. Juss. fruits in three ripening stages as well as the optical behavior and quality level of the oils. RESULTS: The ripening stage affected the chemical composition of the fruits and oils. The fruits presented high values of bioactive compounds, as ascorbic acid (1.46-1.82 g kg-1 ) and total phenols (3.54-15.91 g gallic acid equivalents kg-1 ), as well as showed excellent antioxidant activity. The ripe fruits showed high content of carotenoids (45.90 mg kg-1 ) were lutein is the major carotenoid, representing 55.56%. The oil of the ripe fruits showed high lipid content (252.6 g kg-1 ) and contained oleic (521.83 g kg-1 ), palmitic (209.13 g kg-1 ) and linoleic (195.4 g kg-1 ) fatty acids. The oil of ripe fruits showed the best oxidative stability, with longer induction period (22.29 h) than the other oils. CONCLUSION: Fruits of B. cydoniifolia A. Juss. demonstrate to possess a promising potential for the use as functional ingredients. The oil of the ripe fruits was more stable and presents a greater potential to be used for edible purposes. © 2018 Society of Chemical Industry.


Assuntos
Carotenoides/química , Frutas/crescimento & desenvolvimento , Malpighiaceae/química , Óleos de Plantas/química , Antioxidantes/química , Ácidos Graxos/química , Frutas/química , Malpighiaceae/crescimento & desenvolvimento , Oxirredução
11.
Lasers Med Sci ; 32(5): 1081-1088, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28429192

RESUMO

The use of eosin methylene blue according to Giemsa as photosensitizer is presented for the first time in this paper. The present study evaluated the potential application of chlorophyllin sodium copper salt (CuChlNa) and eosin methylene blue according to Giemsa (EMB) as antimicrobial photosensitizers (aPS) for photodynamic inactivation (PDI) of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. The experiments were performed using S. aureus stain ATCC 25923 and E. coli ATCC 25922 in which five aPS concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 µM for S. aureus and 0.0, 5.0, 10.0, 20.0, 40.0, and 50.0 µM for E. coli) were prepared and added in 2 mL of a saline solution containing the bacterial inoculum. After aPS incubation, the samples were divided into two groups, one kept in the dark and another submitted to the illumination. Then, the bacterial inactivation was determined 18 h after the incubation at 37 °C by counting the colony-forming units (CFU). The results revealed that both EMB and CuChlNa can be used as aPS for the photoinactivation of S. aureus, while only EMB was able to photoinactivate E. coli. Nevertheless, a more complex experimental setup was needed for photoinactivation of E. coli. The data showed that EMB and CuChlNa presented similar photoinactivation effects on S. aureus, in which bacterial growth was completely inhibited at photosensitizer (PS) concentrations over 5 µM, when samples were previously incubated for 30 min and irradiated by a light dose of 30 J cm-2 as a result of an illumination of 1 h at 8.3 mW cm-2 by using a red light at 625 nm with a 1 cm beam diameter and output power of 6.5 mW. In the case of E. coli, bacterial growth was completely inhibited only when combining a PS incubation period of 120 min with concentrations over 20 µM.


Assuntos
Clorofilídeos/farmacologia , Amarelo de Eosina-(YS)/farmacologia , Escherichia coli/efeitos da radiação , Luz , Azul de Metileno/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Camundongos , Células NIH 3T3 , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
12.
J Sci Food Agric ; 97(10): 3359-3364, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27990659

RESUMO

BACKGROUND: Sesame and flaxseed oils, which are rich in essential n-6 and n-3 polyunsaturated fatty acids, are widely consumed. We have determined the optical behavior with respect to the quality and identity of cold-pressed sesame and flaxseed oils. The effects of these oils and their combinations on metabolic parameters in animal models were also measured. RESULTS: Flaxseed oil emitted carotenoid fluorescence (500-650 nm), although it was more unstable than sesame oil, which had a larger induction period by the Rancimat method. The greater stability of sesame may be a result of the lower quantity of linolenic fatty acids. These oils were added to the feed of 56 rats, whereas animal fat was used for the control group. The sesame oil, flaxseed oil and sesame + flaxseed oils groups showed a significantly reduced adiposity index and blood glucose compared to the control group, whereas total cholesterol, high-density lipoprotein and triglycerides were lower in flaxseed oil and sesame + flaxseed oils (P < 0.05). Sesame + flaxseed oils had reduced levels of low-density lipoprotein and non-high-density lipoprotein (P < 0.05), indicating an anti-atherogenic effect in this group. CONCLUSION: Sesame oil was more stable than flaxseed oil. In an animal model, the diets with polyunsaturated fat sources proportions of 1:1 n-6:n-3 polyunsaturated fatty acids, improved the metabolic parameters, implying cardioprotective effects. © 2016 Society of Chemical Industry.


Assuntos
Óleo de Semente do Linho/química , Óleo de Gergelim/química , Adiposidade , Animais , Glicemia/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Linho/química , Linho/metabolismo , Óleo de Semente do Linho/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Modelos Animais , Oxirredução , Ratos , Ratos Wistar , Óleo de Gergelim/metabolismo , Sesamum/química , Sesamum/metabolismo , Triglicerídeos/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123773, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142492

RESUMO

In this work, excitation-emission matrices (EEMs) were used in association with parallel factor analysis (PARAFAC) to assess biodiesel content in undiluted diesel-biodiesel blends (DBBs) without pre-sample preparation. EEMs were decomposed using the PARAFAC (EEMs-PARAFAC), and the loading values of the PARAFAC component as a function of biodiesel content in the blends were used to build an analytical model to quantify the biodiesel content in DBBs. The proposed model presenting a limit of detection (LOD) and a limit of quantification (LOQ) of 2.5% and 11% w/w, respectively, successfully predicted the biodiesel content in the validation samples. The robustness of the model was confirmed by a close analysis of the root mean square error of prediction, standard error of prediction, relative standard deviation of prediction, and Bias. Therefore, an accurate and robust analytical model based on EEMs-PARAFAC was developed to quantify the biodiesel content in undiluted DBBs without sample preparation.


Assuntos
Biocombustíveis , Biocombustíveis/análise , Espectrometria de Fluorescência/métodos , Análise Fatorial
14.
Photodiagnosis Photodyn Ther ; 45: 103952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145771

RESUMO

The rise of antibiotic-resistant bacteria calls for innovative approaches to combat multidrug-resistant strains. Here, the potential of the standard histological stain, Giemsa, to act as a photosensitizer (PS) for antimicrobial photodynamic inactivation (aPDI) against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains is reported. Bioassays were performed using various Giemsa concentrations (ranging from 0.0 to 20.0 µM) under 625 nm illumination at a light dose of 30 J cm-2. Remarkably, Giemsa completely inhibited the growth of MSSA and MRSA bacterial colonies for concentrations at 10 µM and higher but exhibited no inhibitory effect without light exposure. Partition coefficient analysis revealed Giemsa's affinity for membranes. Furthermore, we quantified the production of reactive oxygen species (ROS) and singlet oxygen (1O2) to elucidate the aPDI mechanisms underlying bacterial inactivation mediated by Giemsa. These findings highlight Giemsa stain's potential as a PS in aPDI for targeting multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Infecções Estafilocócicas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Corantes Azur/farmacologia , Corantes Azur/uso terapêutico , Fotoquimioterapia/métodos , Staphylococcus aureus , Anti-Infecciosos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico
15.
Appl Opt ; 52(13): 3004-11, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23669766

RESUMO

A significant increase in the use of the herbicide glyphosate has generated many questions about its residual accumulation in the environment and possible damage to crops. In this study, changes in chlorophyll a (chl-a) fluorescence induced by glyphosate in three varieties of glyphosate-resistant soybean plants were determined with an in vivo analysis based on a portable laser-induced fluorescence system. Strong suppression of chl-a fluorescence was observed for all plants treated with the herbicide. Moreover, the ratio of the emission bands in the red and far-red regions (685 nm/735 nm) indicates that the application of glyphosate led to chlorophyll degradation. The results also indicated that the use of glyphosate, even at concentrations recommended by the manufacturer, suppressed chl-a fluorescence. In summary, this study shows that fluorescence spectroscopy can detect, in vivo, very early changes in the photosynthetic status of transgenic soybeans treated with this herbicide.


Assuntos
Clorofila/análise , Análise de Alimentos/métodos , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glicina/análogos & derivados , Lasers , Espectrometria de Fluorescência/instrumentação , Clorofila A , Tolerância a Medicamentos , Glicina/farmacologia , Herbicidas/farmacologia , Herbicidas/provisão & distribuição , Espectrometria de Fluorescência/métodos , Glifosato
16.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877273

RESUMO

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Água
17.
Biology (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35741408

RESUMO

Tropaeolum majus L. species produce flowers with all sorts of colors, from yellow to red. This work aimed to apply optical fluorescence spectroscopy to study bee abundance in T. majus, answering the following questions: (1) do corolla temperature and weather conditions affect the abundance of visiting bee species? (2) do flower color and corolla fluorescence affect the abundance of visiting bee species? (3) do red flowers attract more visiting bees? (4) is there a relationship between bee visits and flower compounds? The bee species Apis mellifera, Paratrigona lineata, and Trigona spinipes were the most observed in T. majus flowers. The latter was more active in the morning and preferred orange and yellow flowers. These colors also had higher temperatures and fluorescence emissions than did the red ones and those with yellow-red and orange-red nectar guides. Orange flowers emitted a broadband UV spectrum (between 475 and 800 nm). This range might be due to compounds such as hydroxycinnamic acid, flavonols, isoflavonoids, flavones, phenolic acid, and chlorophyll. Extracts from different T. majus corolla colors showed that flowers emit specific fluorescent signals, mainly related to bee color vision and learning, thus acting as a means of communication between bees and flowers. In this way, this information evidences the interaction between bees and T. majus flowers, allowing conservation actions for pollinators.

18.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433149

RESUMO

The use of biocompatible and low-cost polymeric matrices to produce non-phytotoxic nanoparticles for delivery systems is a promising alternative for good practices in agriculture management and biotechnological applications. In this context, there is still a lack of studies devoted to producing low-cost polymeric nanoparticles that exhibit non-phytotoxic properties. Among the different polymeric matrices that can be used to produce low-cost nanoparticles, we can highlight the potential application of cellulose acetate, a natural biopolymer with biocompatible and biodegradable properties, which has already been used as fibers, membranes, and films in different agricultural and biotechnological applications. Here, we provided a simple and low-cost route to produce cellulose acetate nanoparticles (CA-NPs), by modified emulsification solvent evaporation technique, with a main diameter of around 200 nm and a spherical and smooth morphology for potential use as agrochemical nanocarriers. The non-phytotoxic properties of the produced cellulose acetate nanoparticles were proved by performing a plant toxic test by Allium cepa assay. The cytotoxicity and genotoxicity tests allowed us to evaluate the mitotic process, chromosomal abnormalities, inhibition/delay in root growth, and micronucleus induction. In summary, the results demonstrated that CA-NPs did not induce phytotoxic, cytotoxic, or genotoxic effects, and they did not promote changes in the root elongation, germination or in the mitotic, chromosomal aberration, and micronucleus indices. Consequently, the present findings indicated that CA-NPs can be potentially used as environmentally friendly nanoparticles.

19.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893506

RESUMO

The present study aimed to evaluate the feasibility of developing low-cost N- and Fe-doped TiO2 photocatalysts for investigating the mineralization of 2,4-dimethylaniline (2,4-DMA). With a single anatase phase, the photocatalysts showed high thermal stability with mass losses of less than 2%. The predominant oxidative state is Ti4+, but there is presence of Ti3+ associated with oxygen vacancies. In materials with N, doping was interstitial in the NH3/NH4+ form and for doping with Fe, there was a presence of Fe-Ti bonds (indicating substitutional occupations). With an improved band gap energy from 3.16 eV to 2.82 eV the photoactivity of the photocatalysts was validated with an 18 W UVA lamp (340-415 nm) with a flux of 8.23 × 10-6 Einstein s-1. With a size of only 14.45 nm and a surface area of 84.73 m2 g-1, the photocatalyst doped with 0.0125% Fe mineralized 92% of the 2,4-DMA in just 180 min. While the 3% N photocatalyst with 12.27 nm had similar performance at only 360 min. Factors such as high surface area, mesoporous structure and improved Ebg, and absence of Fe peak in XPS analysis indicate that doping with 0.0125% Fe caused a modification in TiO2 structure.

20.
Front Nutr ; 9: 977813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245529

RESUMO

The consumption of regular vegetable oils has been linked to energy acquisition, nutritional benefits, health improvement, and the regulation of metabolic diseases. This study evaluated fatty acids composition, physicochemical, thermal, oxidative, and optical properties, and quantified trace elements in the sunflower oil extracted by a domestic cold-press machine. The oil presented linoleic (54.00%) and oleic (37.29%) primary unsaturated fatty acids (91.67%), in which atherogenic (0.05), thrombogenic (0.16), hypocholesterolemic/hypercholesterolemic (21.97), peroxide (16.16), saponification (141.80), and relative density indices (0.92) demonstrated to be suitable for human consumption and possible health promotion. In addition, the concentrations of trace elements by ICP OES were ordered Zn > Fe > Al > Cu > Mn > Cr. Concentrations of Zn, Fe, Al, Cu, and Mn were lower than FAO/WHO and DRI/AI limits, while Cr concentrations exceeded the FAO/WHO limits, which can be used as an indicator of the polluted ambiance. Sunflower oil quantities daily consumption were calculated by taking into account non-carcinogenic risk (CR < 10-4), and total non-carcinogenic hazard index (HI < 1). Based on trace elements determined in this study, the suitable quantity of sunflower oil consumption varies according to individuals aged 8, 18, and 30 years and will be deemed 0.61, 1.46, and 1.65 g/kg, respectively, attending HI = 0.99 and CR < 10-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA