RESUMO
BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).
Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neuropatia Axonal Gigante , Criança , Humanos , Proteínas do Citoesqueleto/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/terapia , Transgenes , Injeções EspinhaisRESUMO
Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination. Prednisolone alone demonstrated higher mean peripheral blood hFVIII expression; however, this was not sustained upon taper. Anti-capsid and anti-hFVIII antibody responses were robust, and vector genomes and transgene mRNA levels were similar to no immunosuppression at necropsy. Study 2 compared no immunosuppression with prednisolone alone or in combination with rapamycin or methotrexate. The prednisolone/rapamycin group demonstrated an increase in mean hFVIII expression and a mean delay in anti-capsid IgG development until after rapamycin taper. Additionally, a significant reduction in the plasma cell gene signature was observed with prednisolone/rapamycin, suggesting that rapamycin's tolerogenic effects may include plasma cell differentiation blockade. Immunosuppression with prednisolone and rapamycin in combination could improve therapeutic outcomes in AAV vector gene therapy.
Assuntos
Ciclosporina , Sirolimo , Masculino , Humanos , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Sirolimo/metabolismo , Ciclosporina/metabolismo , Plasmócitos , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Prednisolona/metabolismo , Terapia Genética , Vetores Genéticos/genética , Macaca/genética , DependovirusRESUMO
Intra-arterial administration of an adenovirus serotype 5 (Ad5) vector in a gene therapy trial caused lethal, systemic inflammation in subject 019 with ornithine transcarbamylase deficiency. This unanticipated inflammatory response was absent in another subject receiving the same vector dose and in 16 subjects receiving lower vector doses. We hypothesized that an immune memory to a previous natural adenovirus infection enhanced the immune response to high-dose systemic Ad5 vector, causing the exaggerated immune response in subject 019. To investigate this, we found that rabbit polyclonal sera to Ad5 and pooled human immunoglobulin (Ig) inhibited Ad5 vector transduction of non-immune cells in vitro, but enhanced transduction and activation of human dendritic cells (DCs). Sera from approximately 7% of normal human subjects and 50% of patients treated topically with Ad5 vectors enhanced Ad5 transduction and activation of DCs, apparently from formation of Ig-Ad5 immune complexes and binding to DCs through FcγR. Subject 019's blood substantially increased Ad5-vector activation of human DC primary cultures at levels exceeding those from normal subjects. Although this study is based on one event in a single subject, the results implicate a pre-existing humoral immune response to Ad5 in the lethal systemic inflammatory response that occurred in subject 019.
Assuntos
Adenoviridae/imunologia , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Inflamação/etiologia , Adenoviridae/genética , Adenovírus Humanos/imunologia , Animais , Ensaios Clínicos como Assunto , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Inflamação/mortalidade , Camundongos , Transdução GenéticaRESUMO
Adeno-associated virus (AAV)-mediated gene therapy is currently being pursued as a treatment for the monogenic disorder α-1-antitrypsin (AAT) deficiency. Results from phase I and II studies have shown relatively stable and dose-dependent increases in transgene-derived wild-type AAT after local intramuscular vector administration. In this report we describe the appearance of transgene-specific T-cell responses in two subjects that were part of the phase II trial. The patient with the more robust T-cell response, which was associated with a reduction in transgene expression, was characterized more thoroughly in this study. We learned that the AAT-specific T cells in this patient were cytolytic in phenotype, mapped to a peptide in the endogenous mutant AAT protein that contained a common polymorphism not incorporated into the transgene, and were restricted by a rare HLA class I C alleles present only in this patient. These human studies illustrate the genetic influence of the endogenous gene and HLA haplotype on the outcome of gene therapy.
Assuntos
Terapia Genética/métodos , Peptídeos/imunologia , Linfócitos T/imunologia , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/imunologia , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Dependovirus/genética , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo Genético , Linfócitos T/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/imunologiaRESUMO
Alpha-1 antitrypsin deficiency is a monogenic disorder resulting in emphysema due principally to the unopposed effects of neutrophil elastase. We previously reported achieving plasma wild-type alpha-1 antitrypsin concentrations at 2.5%-3.8% of the purported therapeutic level at 1 year after a single intramuscular administration of recombinant adeno-associated virus serotype 1 alpha-1 antitrypsin vector in alpha-1 antitrypsin deficient patients. We analyzed blood and muscle for alpha-1 antitrypsin expression and immune cell response. We also assayed previously reported markers of neutrophil function known to be altered in alpha-1 antitrypsin deficient patients. Here, we report sustained expression at 2.0%-2.5% of the target level from years 1-5 in these same patients without any additional recombinant adeno-associated virus serotype-1 alpha-1 antitrypsin vector administration. In addition, we observed partial correction of disease-associated neutrophil defects, including neutrophil elastase inhibition, markers of degranulation, and membrane-bound anti-neutrophil antibodies. There was also evidence of an active T regulatory cell response (similar to the 1 year data) and an exhausted cytotoxic T cell response to adeno-associated virus serotype-1 capsid. These findings suggest that muscle-based alpha-1 antitrypsin gene replacement is tolerogenic and that stable levels of M-AAT may exert beneficial neutrophil effects at lower concentrations than previously anticipated.
Assuntos
Expressão Gênica , Neutrófilos/metabolismo , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Biomarcadores , Biópsia , Capsídeo/imunologia , Dependovirus/genética , Dependovirus/imunologia , Epitopos de Linfócito T/imunologia , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Músculos/metabolismo , Músculos/patologia , Neutrófilos/enzimologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Transgenes , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/terapiaRESUMO
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.
Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia Genética/métodos , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucuronidase/líquido cefalorraquidiano , Glicosaminoglicanos/metabolismo , Injeções Intravenosas , Injeções Espinhais , Masculino , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/metabolismoRESUMO
PURPOSE: To provide an initial assessment of the safety of a recombinant adeno-associated virus vector expressing RPE65 (rAAV2-CB-hRPE65) in adults and children with retinal degeneration caused by RPE65 mutations. DESIGN: Nonrandomized, multicenter clinical trial. PARTICIPANTS: Eight adults and 4 children, 6 to 39 years of age, with Leber congenital amaurosis (LCA) or severe early-childhood-onset retinal degeneration (SECORD). METHODS: Patients received a subretinal injection of rAAV2-CB-hRPE65 in the poorer-seeing eye, at either of 2 dose levels, and were followed up for 2 years after treatment. MAIN OUTCOME MEASURES: The primary safety measures were ocular and nonocular adverse events. Exploratory efficacy measures included changes in best-corrected visual acuity (BCVA), static perimetry central 30° visual field hill of vision (V30) and total visual field hill of vision (VTOT), kinetic perimetry visual field area, and responses to a quality-of-life questionnaire. RESULTS: All patients tolerated subretinal injections and there were no treatment-related serious adverse events. Common adverse events were those associated with the surgical procedure and included subconjunctival hemorrhage in 8 patients and ocular hyperemia in 5 patients. In the treated eye, BCVA increased in 5 patients, V30 increased in 6 patients, VTOT increased in 5 patients, and kinetic visual field area improved in 3 patients. One subject showed a decrease in BCVA and 2 patients showed a decrease in kinetic visual field area. CONCLUSIONS: Treatment with rAAV2-CB-hRPE65 was not associated with serious adverse events, and improvement in 1 or more measures of visual function was observed in 9 of 12 patients. The greatest improvements in visual acuity were observed in younger patients with better baseline visual acuity. Evaluation of more patients and a longer duration of follow-up will be needed to determine the rate of uncommon or rare side effects or safety concerns.
Assuntos
Dependovirus/genética , Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Degeneração Retiniana/terapia , Adulto , Criança , Eletrorretinografia , Feminino , Vetores Genéticos , Humanos , Injeções Intraoculares , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Masculino , Qualidade de Vida , Degeneração Retiniana/etiologia , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Adulto Jovem , cis-trans-Isomerases/genéticaRESUMO
Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.
Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Fígado/citologia , Animais , Proteínas do Capsídeo/metabolismo , Engenharia Genética , Terapia Genética , Hepatócitos/metabolismo , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução GenéticaRESUMO
UNLABELLED: The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4(+) T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4(+) T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4(+) T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4(+) T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE: The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4(+) T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4(+) T cells and potentially increases susceptibility to SIV infection.
Assuntos
Adenovirus dos Símios/imunologia , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos/imunologia , Imunidade nas Mucosas , Animais , Sangue/imunologia , Mucosa Intestinal/imunologia , Macaca mulatta , Reto/imunologia , Vacinação/métodosRESUMO
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.
Assuntos
Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos , Heparina/metabolismo , Linfócitos T/metabolismo , Animais , Células CHO , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cricetinae , Células Dendríticas/metabolismo , Dependovirus/classificação , Dependovirus/metabolismo , Marcadores Genéticos , Vetores Genéticos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células HeLa , Heparina/farmacologia , Humanos , Interferon gama/análise , Interferon gama/imunologia , Interleucina-4/farmacologia , Cinética , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Sorotipagem , Fatores de TempoRESUMO
Many genetic metabolic diseases manifest in infancy, therefore, it is important to develop effective treatments that could be implemented at this time. Adeno-associated virus serotype 8 (AAV8) gene transfer has been studied in neonatal mouse, cat, and dog models and shown some efficacy with a single hepatic injection at birth. AAV8-mediated liver gene transfer has also generated sustained therapeutic effects in feline and canine models of lysosomal storage disorders. In these models, delaying the age of vector treatment increased gene transfer stability. The growth rate of infant nonhuman primates is more similar to the growth trajectory of humans, thus infant monkeys provide an excellent model to study AAV gene transfer efficiency, stability, and safety. In this study, we report for the first time that AAV8-mediated hepatic gene transfer in infant monkeys is safe and efficient but less stable when compared to adolescent animals. Infant monkeys administered AAV8 intravenously at 1 week postnatal age achieved up to 98% transduction of hepatocytes within 7 days of injection; however, there was significant dilution of genomes and loss of transgene expression 35 days postadministration. Delaying the injection to 1 month postnatal age did not improve stability of transduction but decreased the antibody response to AAV8 capsid.
Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Fígado/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Dependovirus/imunologia , Feminino , Regulação da Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Macaca mulatta , Baço/imunologia , Baço/metabolismo , Fatores de Tempo , Transdução Genética , Transgenes/genética , Transgenes/imunologiaRESUMO
AAV2-sFLT01 is a vector that expresses a modified soluble Flt1 receptor designed to neutralize the proangiogenic activities of vascular endothelial growth factor (VEGF) for treatment of age-related macular degeneration (AMD) via an intravitreal injection. Owing to minimal data available for the intravitreal route of administration for adeno-associated virus (AAV), we initiated a 12-month safety study of AAV2-sFLT01 administered intravitreally at doses of 2.4 × 10(9) vector genomes (vg) and 2.4 × 10(10) vg to cynomolgus monkeys. Expression of sFlt01 protein peaked at ~1-month postadministration and remained relatively constant for the remainder of the study. Electroretinograms, fluorescein angiograms, and tonometry were assessed every 3 months, with no test article-related findings observed in any group. Indirect ophthalmoscopy and slit lamp exams performed monthly revealed a mild to moderate but self-resolving vitreal inflammation in the high-dose group only, which follow-up studies suggest was directed against the AAV2 capsid. Histological evaluation revealed no structural changes in any part of the eye and occasional inflammatory cells in the trabecular meshwork, vitreous and retina in the high-dose group. Biodistribution analysis in rats and monkeys found only trace amounts of vector outside the injected eye. In summary, these studies found AAV2-sFLT01 to be well-tolerated, localized, and capable of long-term expression.
Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Degeneração Macular/terapia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Macaca fascicularis , Degeneração Macular/genética , Camundongos , Reação em Cadeia da Polimerase , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Alpha-1 antitrypsin (AAT) deficiency is well-suited as a target for human gene transfer. We performed a phase 1, open-label, dose-escalation clinical trial of a recombinant adeno-associated virus (rAAV) vector expressing normal (M) AAT packaged into serotype 1 AAV capsids delivered by i.m. injection. Nine AAT-deficient subjects were enrolled sequentially in cohorts of 3 each at doses of 6.9 x 10(12), 2.2 x 10(13), and 6.0 x 10(13) vector genome particles per patient. Four subjects receiving AAT protein augmentation discontinued therapy 28 or 56 days before vector administration. Vector administration was well tolerated, with only mild local reactions and 1 unrelated serious adverse event (bacterial epididymitis). There were no changes in hematology or clinical chemistry parameters. M-specific AAT was expressed above background in all subjects in cohorts 2 and 3 and was sustained at levels 0.1% of normal for at least 1 year in the highest dosage level cohort, despite development of neutralizing antibody and IFN-gamma enzyme-linked immunospot responses to AAV1 capsid at day 14 in all subjects. These findings suggest that immune responses to AAV capsid that develop after i.m. injection of a serotype 1 rAAV vector expressing AAT do not completely eliminate transduced cells in this context.
Assuntos
Terapia Genética/métodos , Linfócitos T/metabolismo , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/metabolismo , Adulto , Idoso , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Capsídeo/enzimologia , Capsídeo/imunologia , Linhagem Celular , Dependovirus/genética , Dependovirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Tempo , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genéticaRESUMO
BACKGROUND: We recently reported the isolation and sequencing of 30 novel adenoviruses from chimpanzees, bonobos and gorillas. These adenoviruses are promising candidates for the purpose of expanding the repertoire of adenoviral serotypes that can be used to create vectors for circumventing pre-existing neutralizing antibodies in human populations. We thus aimed to create vectors from 20 of the newly isolated adenoviruses. METHODS: Plasmid molecular clones were created that harbored the complete E1-deleted genomes from 20 of the newly isolated ape adenoviruses belonging to species B, C and E. The plasmids were transfected into human embryonic kidney (HEK) 293 cells to rescue vectors. We also tested normal human sera to determine the extent of pre-existing cross-neutralizing anti-adenovirus neutralizing antibodies. RESULTS: Twelve vectors could be rescued and expanded following transfection into HEK 293 cells with yields (from fifty 150-mm culture dishes) that ranged from 3 × 10(11) to 7 × 10(13) viral particles. Sera from 50 normal human donors were tested for the presence of neutralizing activity against 21 of the newly isolated ape adenoviruses. Cross-neutralizing activity was generally low, although outliers with high neutralizing activity were frequently detected. Species B ape adenoviruses generally showed the least cross-neutralization with antibodies present in the human sera that were tested. CONCLUSIONS: E1-deleted adenovirus vectors can be created from a wide variety of ape adenoviruses that can be rescued and propagated in HEK 293 cells. The prevalence of pre-existing antibodies that can neutralize these adenoviruses in human populations is low.
Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Vetores Genéticos , Hominidae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Plasmídeos/metabolismo , Proteínas Recombinantes/metabolismo , Linfócitos T/metabolismo , Transfecção , Transgenes , Vacinas Virais/genéticaRESUMO
Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors.
Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/isolamento & purificação , Fezes/virologia , Trato Gastrointestinal/virologia , Hominidae/virologia , Macaca/virologia , Adenoviridae/genética , Infecções por Adenoviridae/virologia , África , Animais , Animais de Zoológico , Genes Virais , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Recombinação GenéticaRESUMO
Adeno-associated viral (AAV) vectors hold great potential for liver-directed gene therapy. Stable and high levels of transgene expression have been achieved in many murine models. Systemic delivery of AAV vectors in nonhuman primates (NHPs) that are natural hosts of AAVs appear to be challenging due to the high prevalence of pre-existing neutralizing antibodies (NAbs). This study evaluates the performance of AAV8, hu.37, and rh.8 vectors expressing green fluorescent protein (GFP) from a liver-specific promoter in rhesus macaques. Two of the animals that received AAV8 showed transduction of 24 and 40% of hepatocytes 7 days after systemic vector delivery. Importantly, expression was detected in several animals after 35 days despite the elevation of liver enzymes and development of transgene-specific T cells in liver. Pre-existing low levels of NAbs profoundly impacted the outcome of gene transfer and redirected vector DNA to spleen. We developed a sensitive in vivo passive transfer assay to detect low levels of NAbs to these novel AAV serotypes. Other strategies need to be developed to reduce immune response to the transgene in order to maintain long-term gene expression.
Assuntos
Dependovirus/genética , Dependovirus/imunologia , Fígado/metabolismo , Transdução Genética/métodos , Animais , Anticorpos Neutralizantes/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Proteínas de Fluorescência Verde , MacacaRESUMO
Vectors based on adeno-associated viruses (AAVs) are being evaluated for use in liver-directed gene therapy. Candidates have been preselected on the basis of capsid structure that plays an important role in determining performance profiles. We describe a comprehensive and statistically powered set of mouse studies designed to compare the performance of vectors based on seven novel AAV capsids. The key criteria used to select candidates for successful gene therapy are high level and stable transgene expression in the absence of toxicity. Based on these criteria, the best performing vectors, AAV8, AAVhu.37, and AAVrh.8, will be further evaluated in nonhuman primates (NHPs).
Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Fígado/metabolismo , Transdução Genética/métodos , Animais , Dependovirus/classificação , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Injeções Intravenosas , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , FilogeniaRESUMO
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.
Assuntos
Vacinas contra a AIDS/imunologia , Dependovirus/genética , Vacinas contra Influenza/imunologia , Macaca mulatta/virologia , Animais , Linfócitos B/imunologia , HIV-1/imunologia , Humanos , Memória Imunológica , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas Sintéticas/imunologiaRESUMO
Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host's response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.
Assuntos
Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/veterinária , Anticorpos Antivirais/sangue , Macaca/virologia , Mucosa/imunologia , Pan troglodytes/virologia , Linfócitos T/imunologia , Proteínas E3 de Adenovirus/imunologia , Animais , Humanos , Testes de NeutralizaçãoRESUMO
With the advent of single B-cell cloning technology, we can isolate antibodies against virtually any antigen to study the interaction of a given pathogen with the immune system and develop novel therapeutic strategies. Antibodies directed against the capsid of adeno-associated viruses (AAV) are a significant obstacle to effectively leveraging AAV as a gene-delivery vector in seropositive individuals. In order to design next-generation vectors that can evade neutralization by these antibodies, studies have mapped the epitopes of mouse monoclonal antibodies generated by immunization with AAV. Although these studies provide critical information regarding capsid immunogenicity, they cannot address (1) differences in the antibody repertoire generated in humans following AAV natural infection; or (2) how reactions can vary when generated in response to vector administration. Here, we isolated and evaluated a panel of novel, fully human anti-AAV antibodies by cloning single memory B cells from a seropositive normal donor. We have validated the utility of this approach to study AAV immunology. Our goal is to leverage this knowledge to design novel AAV variants that can effectively transduce target tissues in individuals with AAV-neutralizing antibodies.