Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 76(4): 936-950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388502

RESUMO

BACKGROUND AND AIMS: In extrahepatic bile duct (EHBD) cholangiopathies, including primary sclerosing cholangitis, a reactive cholangiocyte phenotype is associated with inflammation and epithelial hyperproliferation. The signaling pathways involved in EHBD injury response are poorly understood. In this study, we investigated the role of Hedgehog (HH) signaling and its downstream effectors in controlling biliary proliferation and inflammation after EHBD injury. APPROACH AND RESULTS: Using mouse bile duct ligation as an acute EHBD injury model, we used inhibitory paradigms to uncover mechanisms promoting the proliferative response. HH signaling was inhibited genetically in Gli1-/- mice or by treating wild-type mice with LDE225. The role of neutrophils was tested using chemical (SB225002) and biological (lymphocyte antigen 6 complex locus G6D [Ly6G] antibodies) inhibitors of neutrophil recruitment. The cellular response was defined through morphometric quantification of proliferating cells and CD45+ and Ly6G+ immune cell populations. Key signaling component expression was measured and localized to specific EHBD cellular compartments by in situ hybridization, reporter strain analysis, and immunohistochemistry. Epithelial cell proliferation peaked 24 h after EHBD injury, preceded stromal cell proliferation, and was associated with neutrophil influx. Indian HH ligand expression in the biliary epithelium rapidly increased after injury. HH-responding cells and neutrophil chemoattractant C-X-C motif chemokine ligand 1 (CXCL1) expression mapped to EHBD stromal cells. Inhibition of HH signaling blocked CXCL1 induction, diminishing neutrophil recruitment and the biliary proliferative response to injury. Directly targeting neutrophils by inhibition of the CXCL1/C-X-C motif chemokine receptor 2/Ly6G signaling axis also decreased biliary proliferation. CONCLUSIONS: HH-regulated CXCL1 orchestrates the early inflammatory response and biliary proliferation after EHBD injury through complex cellular crosstalk.


Assuntos
Ductos Biliares Extra-Hepáticos , Quimiocina CXCL1 , Proteínas Hedgehog , Animais , Ductos Biliares Extra-Hepáticos/metabolismo , Proteínas Hedgehog/metabolismo , Inflamação , Ligantes , Camundongos , Receptores de Quimiocinas , Proteína GLI1 em Dedos de Zinco
2.
Am J Physiol Endocrinol Metab ; 320(3): E566-E580, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427045

RESUMO

Sex as a biological variable has been the focus of increasing interest. Relatively few studies have focused, however, on differences in peripheral taste function between males and females. Nonetheless, there are reports of sex-dependent differences in chemosensitivity in the gustatory system. The involvement of endogenous changes in ovarian hormones has been suggested to account for taste discrepancies. Additionally, whether sex differences exist in taste receptor expression, activation, and subsequent signaling pathways that may contribute to different taste responsiveness is not well understood. In this study, we show the presence of both the nuclear and plasma membrane forms of estrogen receptor (ER) mRNA and protein in mouse taste cells. Furthermore, we provide evidence that estrogen increases taste cell activation during the application of fatty acids, the chemical cue for fat taste, in taste receptor cells. We found that genes important for the transduction pathway of fatty acids vary between males and females and that these differences also exist across the various taste papillae. In vivo support for the effect of estrogens in taste cells was provided by comparing the fatty acid responsiveness in male, intact female, and ovariectomized (OVX) female mice with and without hormone replacement. In general, females detected fatty acids at lower concentrations, and the presence of circulating estrogens increased this apparent fat taste sensitivity. Taken together, these data indicate that increased circulating estrogens in the taste system may play a significant role in physiology and chemosensory cellular activation and, in turn, may alter taste-driven behavior.NEW & NOTEWORTHY Using molecular, cellular, and behavioral analyses, this study shows that sex differences occur in fat taste in a mouse model. Female mice are more responsive to fatty acids, leading to an overall decrease in intake and fatty acid preference. These differences are linked to sex hormones, as estradiol enhances taste cell responsiveness to fatty acids during periods of low circulating estrogen following ovariectomy and in males. Estradiol is ineffective in altering fatty acid signaling during a high-estrogen period and in ovariectomized mice on hormone replacement. Thus, taste receptor cells are a direct target for actions of estrogen, and there are multiple receptors with differing patterns of expression in taste cells.


Assuntos
Gorduras na Dieta/farmacologia , Estradiol/sangue , Papilas Gustativas/efeitos dos fármacos , Paladar/fisiologia , Animais , Células Cultivadas , Gorduras na Dieta/metabolismo , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovariectomia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Caracteres Sexuais , Paladar/efeitos dos fármacos , Papilas Gustativas/metabolismo , Percepção Gustatória/fisiologia
3.
Innate Immun ; 29(6): 122-131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37545346

RESUMO

Consumption of diets high in fat has been linked to the development of obesity and related metabolic complications. Such associations originate from the enhanced, chronic, low-grade inflammation mediated by macrophages in response to translocated bacteria, bacterial products, or dietary constituents such as fatty acids (FAs). Nucleotide-binding Oligomerization Domain 2 (NOD2) senses muramyl dipeptide (MDP), a component of bacterial peptidoglycan. The inability to sense peptidoglycan through NOD2 has been demonstrated to lead to dysbiosis, increased bacterial translocation, inflammation and metabolic dysfunction. Currently, it is unknown how consumption of HFDs with different FA compositions might influence NOD2-dependent responses. In this study, we subjected WT mice to a control diet or to HFDs comprised of various ratios of unsaturated to saturated fats and determined the macrophage response to TLR4 and NOD2 agonists. A HFD with equal ratios of saturated and unsaturated fats enhanced subsequent responsiveness of macrophages to LPS but not to MDP. However, a high-unsaturated fat diet (HUFD) or a high-saturated fat diet (HSFD) both decreased the responsiveness to NOD2 agonists compared to that observed in control diet (CD) fed mice. These data suggest that dietary fatty acid composition can influence the subsequent macrophage responsiveness to bacterial products.


Assuntos
Gorduras na Dieta , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptor 4 Toll-Like , Animais , Camundongos , Acetilmuramil-Alanil-Isoglutamina , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteína Adaptadora de Sinalização NOD2/agonistas , Peptidoglicano/metabolismo , Receptor 4 Toll-Like/agonistas
4.
Nutrients ; 13(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804920

RESUMO

Ghrelin is a major appetite-stimulating neuropeptide found in circulation. While its role in increasing food intake is well known, its role in affecting taste perception, if any, remains unclear. In this study, we investigated the role of the growth hormone secretagogue receptor's (GHS-R; a ghrelin receptor) activity in the peripheral taste system using feeding studies and conditioned taste aversion assays by comparing wild-type and GHS-R-knockout models. Using transgenic mice expressing enhanced green fluorescent protein (GFP), we demonstrated GHS-R expression in the taste system in relation phospholipase C ß2 isotype (PLCß2; type II taste cell marker)- and glutamate decarboxylase type 67 (GAD67; type III taste cell marker)-expressing cells using immunohistochemistry. We observed high levels of co-localization between PLCß2 and GHS-R within the taste system, while GHS-R rarely co-localized in GAD67-expressing cells. Additionally, following 6 weeks of 60% high-fat diet, female Ghsr-/- mice exhibited reduced responsiveness to linoleic acid (LA) compared to their wild-type (WT) counterparts, while no such differences were observed in male Ghsr-/- and WT mice. Overall, our results are consistent with the interpretation that ghrelin in the taste system is involved in the complex sensing and recognition of fat compounds. Ghrelin-GHS-R signaling may play a critical role in the recognition of fatty acids in female mice, and this differential regulation may contribute to their distinct ingestive behaviors.


Assuntos
Apetite/fisiologia , Gorduras/administração & dosagem , Comportamento Alimentar/fisiologia , Receptores de Grelina/metabolismo , Paladar/fisiologia , Ração Animal , Animais , Feminino , Camundongos , Camundongos Transgênicos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA