Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Reproduction ; 163(3): 133-143, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35038315

RESUMO

As obese and overweight patients commonly display hyperlipidemia and are increasingly accessing fertility clinics for their conception needs, our studies are directed at understanding the effects of hyperlipidemia on early pregnancy. We have focused on investigating palmitic acid (PA) and oleic acid (OA) treatment alone and in combination from the mouse two-cell stage embryos as a model for understanding their effects on the mammalian preimplantation embryo. We recently reported that PA exerts a negative effect on mouse two-cell progression to the blastocyst stage, whereas OA co-treatment reverses that negative effect. In the present study, we hypothesized that PA treatment of mouse embryos would disrupt proper localization of cell fate determining and blastocyst formation gene products and that co-treatment with OA would reverse these effects. Our results demonstrate that PA treatment significantly (P < 0.05) reduces blastocyst development and cell number but did not prevent nuclear localization of YAP in outer cells. PA treatment significantly reduced the number of OCT4+ and CDX2+ nuclei. PA-treated embryos had lower expression of blastocyst formation proteins (E-cadherin, ZO-1 and Na/K-ATPase alpha1 subunit). Importantly, co-treatment of embryos with OA reversed PA-induced effects on blastocyst development and increased inner cell mass (ICM) and trophectoderm (TE) cell numbers and expression of blastocyst formation proteins. Our findings demonstrate that PA treatment does not impede cell fate gene localization but does disrupt proper blastocyst formation gene localization during mouse preimplantation development. OA treatment is protective and reverses PA's detrimental effects. The results advance our understanding of the impact of FFA exposure on mammalian preimplantation development.


Assuntos
Desenvolvimento Embrionário , Ácido Palmítico , Animais , Blastocisto/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mamíferos , Camundongos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Gravidez
2.
FASEB J ; 33(8): 9374-9387, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31091422

RESUMO

A nonreceptive uterus is a major cause of embryo implantation failure. This study examined the importance of the Gαq/11-coupled class of GPCRs as regulators of uterine receptivity. Mice were created lacking uterine Gαq and Gα11; as a result, signaling by all uterine Gαq/11-coupled receptors was disrupted. Reproductive profiling of the knockout females revealed that on d 4 of pregnancy, despite adequate serum progesterone (P4) levels and normal P4 receptor (PR) expression, there was no evidence of PR signaling. This resulted in the down-regulation of heart and neural crest derivatives expressed 2, Kruppel-like factor 15, and cyclin G1 and the subsequent persistent proliferation of the luminal epithelium. Aquaporin (Aqp) 11 was also potently down-regulated, whereas Aqp5/AQP5 expression persisted, resulting in the inhibition of luminal closure. Hypertrophy of the myometrial longitudinal muscle was also dramatically diminished, likely contributing to the observed implantation failure. Further analyses revealed that a major mechanism via which uterine Gαq/11 signaling induces PR signaling is through the transcriptional up-regulation of leucine-rich repeat-containing GPCR 4 (Lgr4). LGR4 was previously identified as a trigger of PR activation and signaling. Overall, this study establishes that Gαq/11 signaling, in a P4-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse, and disruption of such signaling results in P4 resistance.-de Oliveira, V., Schaefer, J., Calder, M., Lydon, J. P., DeMayo, F. J., Bhattacharya, M., Radovick, S., Babwah, A. V. Uterine Gαq/11 signaling, in a progesterone-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse.


Assuntos
Implantação do Embrião/fisiologia , Progesterona/sangue , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Implantação do Embrião/genética , Feminino , Expressão Gênica , Camundongos , Miométrio/metabolismo , Gravidez , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Mol Hum Reprod ; 23(11): 771-785, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962017

RESUMO

STUDY QUESTION: What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? SUMMARY ANSWER: AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. WHAT IS KNOWN ALREADY: AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. STUDY DESIGN, SIZE, DURATION: Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 µM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 µM AICAR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. MAIN RESULTS AND THE ROLE OF CHANCE: Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. WIDER IMPLICATIONS OF THE FINDINGS: Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. STUDY FUNDING AND COMPETING INTEREST(S): Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Ribonucleotídeos/farmacologia , Junções Íntimas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/biossíntese , Aminoimidazol Carboxamida/farmacologia , Animais , Blastocisto/metabolismo , Blastocisto/ultraestrutura , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas de Cultura Embrionária , Feminino , Camundongos , Oxazinas/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
4.
J Neurosci ; 35(37): 12903-16, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377475

RESUMO

The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via ß-arrestin, and in mice lacking ß-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. SIGNIFICANCE STATEMENT: The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/deficiência , Hormônio Liberador de Gonadotropina/fisiologia , Hipogonadismo/fisiopatologia , Infertilidade Feminina/fisiopatologia , Infertilidade Masculina/fisiopatologia , Animais , Blastocisto/patologia , Desenvolvimento Embrionário , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Perfilação da Expressão Gênica , Genitália Feminina/patologia , Genitália Feminina/fisiopatologia , Genitália Masculina/patologia , Genitália Masculina/fisiopatologia , Hormônios Esteroides Gonadais/metabolismo , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Gonadotropinas Hipofisárias/metabolismo , Gonadotropinas Hipofisárias/farmacologia , Hipogonadismo/genética , Hipogonadismo/patologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/patologia , Infertilidade Feminina/embriologia , Infertilidade Feminina/genética , Infertilidade Masculina/embriologia , Infertilidade Masculina/genética , Kisspeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Ovariectomia , Ovulação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Fenótipo , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Espermatogênese
5.
Reprod Biol Endocrinol ; 13: 105, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26384646

RESUMO

BACKGROUND: Expression of kisspeptin (protein) and Kiss1r (mRNA) was recently documented in the mouse uterus on D4 of pregnancy (the day of embryo implantation) suggesting that the uterine-based kisspeptin (KP)/kisspeptin receptor (KISS1R) signaling system regulates embryo implantation. Despite this important suggestion, it was never demonstrated that the uterus actually exhibits a functional KP/KISS1R signaling system on D4 of pregnancy. Thus, the goal of this study was to determine whether a functional KP/KISS1R signaling system exists in the mouse uterus on D4 of pregnancy. FINDINGS: Since kisspeptin/KISS1R signaling triggers the phosphorylation of the mitogen-activated protein kinases p38 and ERK1/2, through immunohistochemical analyses, we determined whether exogenously administered kisspeptin could trigger p38 and ERK1/2 phosphorylation in the uterus on D4 of pregnancy. The results clearly demonstrated that kisspeptin could and that its effects were mediated via KISS1R. Additionally, the robust kisspeptin-triggered response was observed in the pregnant uterus only. Finally, it was demonstrated that on D4 of pregnancy the Kiss1 null uterus expresses functional KISS1R molecules capable of mediating the effects of kisspeptin. CONCLUSIONS: These results lead us to conclude that on D4 of pregnancy, the mouse uterus expresses a functional KP/KISS1R signaling system strengthening the possibility that this signaling system regulates embryo implantation. These findings strengthen the rationale for determining whether such a functional system exists in the uterus of the human female and if so, what role it might play in human pregnancy.


Assuntos
Implantação do Embrião/fisiologia , Kisspeptinas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Útero/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Receptores de Kisspeptina-1
6.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729591

RESUMO

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Choque Térmico/metabolismo , Isquemia/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Animais , Blastocisto/metabolismo , Western Blotting , Fator de Transcrição CDX2 , Células Cultivadas , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Isquemia/genética , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Príons/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Gene Expr Patterns ; 46: 119281, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243294

RESUMO

Obese women experience greater incidence of infertility, with reproductive tracts exposing preimplantation embryos to elevated free fatty acids (FFA) such as palmitic acid (PA) and oleic acid (OA). PA treatment impairs mouse preimplantation development in vitro, while OA co-treatment rescues blastocyst development of PA treated embryos. In the present study, we investigated the effects of PA and OA treatment on NRF2/Keap1 localization, and relative antioxidant enzyme (Glutathione peroxidase; Gpx1, Catalase; Cat, Superoxide dismutase; Sod1 and γ-Glutamylcysteine ligase catalytic unit; Gclc) mRNA levels, during in vitro mouse preimplantation embryo development. Female mice were superovulated, mated, and embryos cultured in the presence of bovine Serum albumin (BSA) control or PA, or OA, alone (each at 100 µM) or PA + OA combined (each at 100 µM) treatment. NRF2 displayed nuclear localization at all developmental stages, whereas Keap1 primarily displayed cytoplasmic localization throughout control mouse preimplantation development in vitro. Relative transcript levels of Nrf2, Keap1, and downstream antioxidants significantly increased throughout control mouse preimplantation development in vitro. PA treatment significantly decreased blastocyst development and the levels of nuclear NRF2, while OA and PA + OA treatments did not. PA and OA treatments did not impact relative mRNA levels of Nrf2, Keap1, Gpx1, Cat, Sod1 or Gclc. Our outcomes demonstrate that cultured mouse embryos display nuclear NRF2, but that PA treatment reduces nuclear NRF2 and thus likely impacts NRF2/KEAP1 stress response mechanisms. Further studies should investigate whether free fatty acid effects on NRF2/KEAP1 contribute to the reduced fertility displayed by obese patients.


Assuntos
Ácidos Graxos não Esterificados , Fator 2 Relacionado a NF-E2 , Animais , Feminino , Camundongos , Gravidez , Antioxidantes/metabolismo , Blastocisto/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase-1/metabolismo
8.
Reproduction ; 142(5): 689-98, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846809

RESUMO

During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.


Assuntos
Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Gases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a RNA/metabolismo , Animais , Pressão Atmosférica , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Gravidez
9.
Reprod Sci ; 27(11): 2038-2051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32542540

RESUMO

Obesity is associated with altered fatty acid profiles, reduced fertility, and assisted reproductive technology (ART) success. The effects of palmitic acid (PA), oleic acid (OA), and their combination on mouse preimplantation development, endoplasmic reticulum (ER) stress pathway gene expression, lipid droplet formation, and mitochondrial reactive oxygen species (ROS) were characterized. Two-cell stage mouse embryos collected from superovulated and mated CD1 females were placed into culture with KSOMaa medium, or PA alone or in combination with OA for 46 h. PA significantly reduced blastocyst development in a concentration-dependent manner, which was prevented by co-treatment with OA. PA and OA levels in mouse reproductive tracts were assessed by liquid chromatography coupled to mass spectrometry (LC-MS). LC-MS indicated higher concentrations of PA in the mouse oviduct than the uterus. Transcript analysis revealed that PA alone groups had increased ER stress pathway (ATF3, CHOP, and XBP1 splicing) mRNAs, which was alleviated by OA co-treatment. OA co-treatment significantly increased lipid droplet accumulation and significantly decreased mitochondrial ROS from PA treatment alone. PA treatment for only 24 h significantly reduced its impact on blastocyst development from the 2-cell stage. Thus, PA affects ER stress pathway gene expression, lipid droplet accumulation, and mitochondrial ROS in treated preimplantation embryos. These mechanisms may serve to offset free fatty acid exposure effects on preimplantation development, but their protective ability may be overwhelmed by elevated PA.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Fertilidade/fisiologia , Obesidade/metabolismo , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Fertilidade/efeitos dos fármacos , Camundongos , Obesidade/complicações , Ácido Oleico/administração & dosagem , Oviductos/metabolismo , Ácido Palmítico/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Útero/metabolismo
10.
Mol Hum Reprod ; 14(12): 691-701, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19043080

RESUMO

Preimplantation development shifts from a maternal to embryonic programme rapidly after fertilization. Although the majority of oogenetic products are lost during the maternal to embryonic transition (MET), several do survive this interval to contribute directly to supporting preimplantation development. Embryonic genome activation (EGA) is characterized by the transient expression of several genes that are necessary for MET, and while EGA represents the first major wave of gene expression, a second mid-preimplantation wave of transcription that supports development to the blastocyst stage has been discovered. The application of genomic approaches has greatly assisted in the discovery of stage specific gene expression patterns and the challenge now is to largely define gene function and regulation during preimplantation development. The basic mechanisms controlling compaction, lineage specification and blastocyst formation are defined. The requirement for embryo culture has revealed plasticity in the developmental programme that may exceed the adaptive capacity of the embryo and has fostered important research directions aimed at alleviating culture-induced changes in embryonic programming. New levels of regulation are emerging and greater insight into the roles played by RNA-binding proteins and miRNAs is required. All of this research is relevant due to the necessity to produce healthy preimplantation embryos for embryo transfer, to ensure that assisted reproductive technologies are applied in the most efficient and safest way possible.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , RNA , Animais , Linhagem da Célula , Técnicas de Cultura Embrionária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA
11.
Theriogenology ; 108: 245-254, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258041

RESUMO

CD-1 mice are commonly employed as a research model for defining mechanisms controlling early mammalian development and for understanding environmental impacts on mammalian fertility. CD-1 female mice were kept four to eight months under conventional animal care housing, and were fed ad libitum with normal laboratory mouse chow. Female weight, mating success, oocyte morphology, blastocyst development in vivo and in vitro, and RT-qPCR analysis of trophectoderm cell markers (Cdx2, Slc2a1, and Atp1a1 transcript abundance, and CDX2 localization) were assessed and contrasted with outcomes from four-week-old control CD-1 mice. Embryo development in vivo in four to eight-month-old mice was significantly reduced compared to four-week-old controls. Oocytes and blastocysts from four to eight-month-old CD-1 mice displayed high levels of fragmentation and degradation, significantly reduced embryo cell counts, decreased Cdx2 transcript abundance, and number of CDX2 positive cells in morulae. We have discovered that female CD-1 mice housed under conventional conditions display a rapid loss of fecundity as they age over a few months. Paradoxically, embryo loss can be avoided by placing early embryos collected from four to eight-month-old mice into culture to support development to the blastocyst stage. We conclude that oocyte quality rapidly declines in CD-1 female mice housed under conventional animal care conditions. Thus, four to eight-month-old female CD-1 mice represent a very distinct research model from that of younger mice and this older research animal model may be preferred for understanding environmental and physiological influences limiting fertility in women.


Assuntos
Fertilidade , Camundongos Endogâmicos/fisiologia , Fatores Etários , Animais , Técnicas de Cultura Embrionária , Feminino , Abrigo para Animais , Idade Materna , Modelos Animais , Oócitos/citologia , Oócitos/fisiologia
12.
Am J Chin Med ; 44(5): 981-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27430916

RESUMO

In North America, a high proportion of pregnant women use herbal medications including North American ginseng. This medicinal plant contains high amounts of triterpene saponins (ginsenosides), which are the main bioactive compounds. It is important to assess ginseng's impact on all reproductive functions to ensure the safety of pregnant women and fetuses. In this study, we defined the concentration-responsive effects of North American alcoholic and aqueous ginseng extracts on preimplantation development in vitro and on pregnancy and post-partum development in the mouse. Two-cell mouse embryos were cultured with 5 different concentrations of whole ginseng root extracts, or ginsenosides Rb1, Rg1 and Re alone, a combinatorial ginsenoside solution and a crude polysaccharide fraction solution. Embryonic development and recovery from each treatment was assessed. To investigate the in vivo effects of ginseng extracts, female mice were gavaged with 50[Formula: see text]mg/kg/day, 500[Formula: see text]mg/kg/day or 2000[Formula: see text]mg/kg/day of either extract (treatment) or water (sham) for 2 weeks prior to mating and throughout gestation. Gestation period, litter size, pup growth and pup sex ratio were evaluated. Oral ginseng consumption did not significantly affect fertility or pregnancy in the mouse. High doses of ginseng (2000[Formula: see text]mg/kg/day) decreased maternal weight gain. Direct treatment of preimplantation embryos in vitro demonstrated that ALC and AQ extract treatment reduced development in a concentration responsive manner, while only ALC extract effects were largely reversible. Treatments with individual or combinatorial ginsenosides, or the polysaccharide fraction solution alone did not impair preimplantation development, in vitro. In conclusion, maternal oral consumption of ginseng has little negative impact on pregnancy in the mouse, however, direct exposure to ginseng extract during mouse preimplantation development in vitro is detrimental.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Panax/química , Extratos Vegetais/administração & dosagem , Gravidez/efeitos dos fármacos , Gravidez/fisiologia , Animais , Feminino , Ginsenosídeos/administração & dosagem , Humanos , Masculino , Camundongos
13.
Sci Rep ; 6: 29073, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27364226

RESUMO

Uterine growth and endometrial gland formation (adenogenesis) and function, are essential for fertility and are controlled by estrogens and other regulators, whose nature and physiological relevance are yet to be elucidated. Kisspeptin, which signals via Kiss1r, is essential for fertility, primarily through its central control of the hypothalamic-pituitary-ovarian axis, but also likely through peripheral actions. Using genetically modified mice, we addressed the contributions of central and peripheral kisspeptin signaling in regulating uterine growth and adenogenesis. Global ablation of Kiss1 or Kiss1r dramatically suppressed uterine growth and almost fully prevented adenogenesis. However, while uterine growth was fully rescued by E2 treatment of Kiss1(-/-) mice and by genetic restoration of kisspeptin signaling in GnRH neurons in Kiss1r(-/-) mice, functional adenogenesis was only marginally restored. Thus, while uterine growth is largely dependent on ovarian E2-output via central kisspeptin signaling, peripheral kisspeptin signaling is indispensable for endometrial adenogenesis and function, essential aspects of reproductive competence.


Assuntos
Endométrio/crescimento & desenvolvimento , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética , Útero/crescimento & desenvolvimento , Animais , Endométrio/metabolismo , Estrogênios/genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Neurônios/metabolismo , Organogênese/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Reprodução/genética , Reprodução/fisiologia , Transdução de Sinais/genética , Útero/metabolismo
14.
Fertil Steril ; 83 Suppl 1: 1077-85, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15831278

RESUMO

OBJECTIVE: To determine the distribution of transcripts encoding the FSH receptor (FSHr), LH receptor (LHr), connexin 43 (Cx43), cyclooxygenase-2 (COX-2), and prostaglandin E(2) receptors 2 and 3 (EP2 and EP3) within bovine cumulus-oocyte complexes (COCs) and denuded oocytes and investigate the influence of gonadotropins, serum, and cumulus cell expansion on the abundance of transcripts encoding these genes. DESIGN: Prospective controlled animal study. SETTING: University research laboratory. PATIENT(S): Animal models for human studies. INTERVENTION(S): Cumulus-oocyte complexes were treated in culture with serum and gonadotropin-supplemented media to examine the effects to mRNA transcript levels. MAIN OUTCOME MEASURE(S): Variation in mRNA transcript levels. RESULT(S): Luteinizing hormone receptor, FSHr, and EP3 mRNAs were detected in intact COCs and not in cumulus cell-denuded oocytes, whereas Cx43, COX-2, and EP2 mRNAs were found in both COCs and oocytes. The relative abundance of marker gene mRNAs did not vary in media containing no additives or FSH alone, independent of whether the media induced cumulus cell expansion. However, the presence of serum in maturation media significantly decreased expression of all mRNAs except LHr. CONCLUSION(S): The relative abundance of COC mRNAs is altered by serum in the maturation medium, which may signify long-term consequences for embryonic development.


Assuntos
Proteínas Sanguíneas/farmacologia , Fertilização in vitro , Oócitos/fisiologia , Transcrição Gênica/efeitos dos fármacos , Animais , Bovinos , Ciclo-Oxigenase 2 , Feminino , Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Gonadotropinas/farmacologia , Técnicas In Vitro , Oócitos/citologia , Prostaglandina-Endoperóxido Sintases/genética , RNA Mensageiro/análise , Receptores do FSH/genética , Receptores do LH/genética , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP3
15.
Reprod Biol Endocrinol ; 1: 14, 2003 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-12646061

RESUMO

Substantially less development to the blastocyst stage occurs in vitro than in vivo and this may be due to deficiencies in oocyte competence. Although a large proportion of bovine oocytes undergo spontaneous nuclear maturation, less is known about requirements for proper cytoplasmic maturation. Commonly, supraphysiological concentrations of FSH and LH are added to maturation media to improve cumulus expansion, fertilization and embryonic development. Therefore, various concentrations of porcine FSH (pFSH) and recombinant human FSH (rhFSH) were investigated for their effect on bovine cumulus expansion in vitro. Expression of FSHr, LHr and Cx43 mRNAs was determined in cumulus-oocyte complexes to determine whether they would be useful markers of oocyte competence. In serum-free media, only 1000 ng/ml pFSH induced marked cumulus expansion, but the effect of 100 ng/ml pFSH was amplified in the presence of 10% serum. In contrast, cumulus expansion occurred with 1 ng/ml rhFSH in the absence of serum. FSHr mRNA was highest at 0-6 h of maturation, then abundance decreased. Similarly, Cx43 mRNA expression was highest from 0-6 h but decreased by 24 h of maturation. However, the relative abundance of LHr mRNA did not change from 6-24 h of maturation. Decreased levels of FSHr, LHr and Cx43 mRNAs were detected in COCs of poorer quality. In conclusion, expansion of bovine cumulus occurred at low doses of rhFSH in serum-free media. In summary, FSHr, LHr and Cx43 mRNA abundance reflects COC quality and FSHr and Cx43 mRNA expression changes during in vitro maturation; these genes may be useful markers of oocyte developmental competence.


Assuntos
Conexina 43/genética , Hormônio Foliculoestimulante/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , RNA Mensageiro/biossíntese , Receptores do FSH/genética , Receptores do LH/genética , Animais , Bovinos , Meios de Cultura Livres de Soro/farmacologia , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Feminino , Humanos , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Receptores do FSH/biossíntese , Receptores do LH/biossíntese , Proteínas Recombinantes/farmacologia , Suínos
16.
Endocrinology ; 155(8): 3065-78, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24877624

RESUMO

The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive neuroendocrine axis, and loss of Kiss1 in the mouse results in infertility, a condition generally attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss1(-/-) female mice, acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization; however, these mice are still unable to achieve pregnancy because embryos fail to implant. Progesterone treatment did not overcome this defect. Kiss1(+/-) embryos transferred to a wild-type female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kisspeptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and the ability of the uterus to undergo decidualization. Instead, the loss of Kiss1 expression specifically disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly expressed in Kiss1(-/-) uterine glands and that the administration of exogenous Lif to hormone-primed Kiss1(-/-) female mice is sufficient to partially rescue implantation. Taken together, our study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study provides compelling reasons to explore this role in other species, particularly livestock and humans.


Assuntos
Implantação do Embrião , Kisspeptinas/fisiologia , Fator Inibidor de Leucemia/fisiologia , Prenhez/fisiologia , Útero/fisiologia , Animais , Estradiol/fisiologia , Feminino , Gonadotropinas/fisiologia , Kisspeptinas/deficiência , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Progesterona/metabolismo , Superovulação
17.
PLoS One ; 6(8): e23704, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21901128

RESUMO

The Na(+)/K(+)-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na(+)/K(+)-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS)-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK) members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10(-3) M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10(-4) M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability.


Assuntos
Blastocisto/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Íntimas/metabolismo , Quinases da Família src/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Western Blotting , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Indóis/farmacologia , Masculino , Camundongos , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Sulfonamidas/farmacologia , Junções Íntimas/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores
19.
Reproduction ; 130(1): 41-51, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15985630

RESUMO

Blastocyst formation, as a critical period during development, is an effective indicator of embryonic health and reproductive efficiency. Out of a number of mechanisms underlying blastocyst formation, highly conserved mitogen-activated protein kinase (MAPK) signaling has emerged as a major mechanism involved in regulating murine preimplantation embryo development. The objective of our study was to ascertain the role of MAPK signaling in regulating bovine development to the blastocyst stage. Using reverse transcriptase PCR and immunohistochemical staining procedures we have demonstrated that mRNA transcripts and polypeptides encoding p38 MAPK pathway constituents are detectable in preimplantation bovine embryos from the one-cell to the blastocyst stage. Further, the effects on bovine embryo development following inhibition of p38 alpha/beta and extracellular signal-regulated kinase (ERK) signaling by treatment with SB220025 and U0126, respectively, were investigated. Eight-cell bovine embryos (50 per group; three replicates) were placed into treatments consisting of synthetic oviductal fluid (SOF) medium: SOF + SB202474 (inactive analogue), SOF + SB220025, SOF + U0124 (inactive analogue), SOF + U0126, and SOF + SB220025 + U0126. Inhibition of p38 MAPK or ERK signaling individually did not affect development to the blastocyst stage. However, when both pathways were blocked simultaneously there was a significant reduction (P < 0.05) in blastocyst formation, cell number and immunofluorescence of phosphorylated downstream pathway constituents. We have determined that, in variance to what was observed during murine preimplantation development, bovine early embryos progress at normal frequencies to the blastocyst stage in the presence of p38 MAPK inhibitors.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Actinas/metabolismo , Animais , Butadienos/farmacologia , Bovinos , Técnicas de Cultura Embrionária , Inibidores Enzimáticos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Nitrilas/farmacologia , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA