Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(9): 11816-11837, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666604

RESUMO

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.


Assuntos
Biomarcadores/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Terapia Genética/métodos , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Carnitina O-Palmitoiltransferase/genética , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Triglicerídeos/metabolismo
2.
Biochim Biophys Acta ; 1861(12 Pt A): 1929-1941, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27686967

RESUMO

New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteína Desacopladora 1/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Termogênese/efeitos dos fármacos
3.
Curr Hypertens Rep ; 19(10): 83, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986756

RESUMO

Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , América Latina/epidemiologia , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia
4.
Am J Physiol Endocrinol Metab ; 308(9): E756-69, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25714670

RESUMO

Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Macrófagos/metabolismo , Células 3T3-L1 , Adulto , Idoso , Animais , Estudos de Coortes , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução , Triglicerídeos/metabolismo
5.
Antioxidants (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830088

RESUMO

Submicron particles have been produced from an ethanolic extract of Myrtus communnis leaves using supercritical carbon dioxide technology, hereinafter referred to as Supercritical Antisolvent Extraction (SAE). The influence of pressure (9-20 MPa), temperature (308 and 328 K) and injection rate (3 and 8 mL/min) on the particles' precipitation has been investigated, and it has been confirmed that increases in pressure and temperature led to smaller particle sizes. The obtained particles had a quasi-spherical shape with sizes ranging from 0.42 to 1.32 µm. Moreover, the bioactivity of the generated particles was assessed and large contents of phenolic compounds with a high antioxidant activity were measured. The particles were also subjected to in vitro studies against oxidative stress. The myrtle particles demonstrated cytoprotective properties when applied at low concentrations (1 µM) to macrophage cell lines.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36673654

RESUMO

This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 ± 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (ß = −0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (ß = −0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, ß = 0.437, p = 0.02) and men (interleukin−6, ß = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.


Assuntos
Comportamento Sedentário , Fator de Necrose Tumoral alfa , Masculino , Humanos , Feminino , Adulto Jovem , Adolescente , Adulto , Catalase , Interleucina-6 , Exercício Físico , Estresse Oxidativo , Antioxidantes , Malondialdeído , Glutationa , Acelerometria
7.
Nutrients ; 15(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299591

RESUMO

It is unknown how plasma leptin affects fat oxidation depending on sex in young adults. Therefore, the present cross-sectional study aimed to examine the associations of plasma leptin with resting fat oxidation (RFO), maximal fat oxidation during exercise (MFO), and insulin sensitivity, considering the different responses in men and women, and the mediating role of fatness and cardiorespiratory fitness (CRF). Sixty-five young adults (22.5 ± 4.3 years; body mass index = 25.2 ± 4.7 kg·m-2, 23 females) participated in this study. Fasting plasma glucose, insulin, and leptin were analyzed. Variables related to insulin resistance (HOMA1-IR, HOMA2-IR), secretion (HOMA-%ß), and sensitivity (HOMA-%S, QUICKI) were computed. RFO and MFO were determined through indirect calorimetry. A peak oxygen uptake (VO2peak) test was performed until exhaustion after the MFO test. The MFO was relativized to body mass (MFO-BM) and the legs' lean mass divided by the height squared (MFO-LI). In men, leptin was negatively associated with MFO-BM and positively with HOMA-%ß (p ≤ 0.02 in both). In women, leptin was positively associated with RFO and QUICKI, and negatively with MFO-BM (p < 0.05 in all). The association between leptin and MFO was mediated by CRF (p < 0.05), but not by fat mass (p > 0.05). Plasma leptin is associated with fat oxidation and insulin secretion/sensitivity, with different responses within each sex. The association between leptin and fat oxidation is mediated by cardiorespiratory fitness.


Assuntos
Resistência à Insulina , Leptina , Masculino , Humanos , Feminino , Adulto Jovem , Estudos Transversais , Teste de Esforço , Tecido Adiposo
8.
Biofactors ; 49(6): 1106-1120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37286331

RESUMO

The angiotensin II type 2 receptor (AT2R) exerts vasorelaxant, anti-inflammatory, and antioxidant properties. In obesity, its activation counterbalances the adverse cardiovascular effects of angiotensin II mediated by the AT1R. Preliminary results indicate that it also promotes brown adipocyte differentiation in vitro. Our hypothesis is that AT2R activation could increase BAT mass and activity in obesity. Five-week-old male C57BL/6J mice were fed a standard or a high-fat (HF) diet for 6 weeks. Half of the animals were treated with compound 21 (C21), a selective AT2R agonist, (1 mg/kg/day) in the drinking water. Electron transport chain (ETC), oxidative phosphorylation, and UCP1 proteins were measured in the interscapular BAT (iBAT) and thoracic perivascular adipose tissue (tPVAT) as well as inflammatory and oxidative parameters. Differentiation and oxygen consumption rate (OCR) in the presence of C21 was tested in brown preadipocytes. In vitro, C21-differentiated brown adipocytes showed an AT2R-dependent increase of differentiation markers (Ucp1, Cidea, Pparg) and increased basal and H+ leak-linked OCR. In vivo, HF-C21 mice showed increased iBAT mass compared to HF animals. Both their iBAT and tPVAT showed higher protein levels of the ETC protein complexes and UCP1, together with a reduction of inflammatory and oxidative markers. The activation of the AT2R increases BAT mass, mitochondrial activity, and reduces markers of tissue inflammation and oxidative stress in obesity. Therefore, insulin reduction and better vascular responses are achieved. Thus, the activation of the protective arm of the renin-angiotensin system arises as a promising tool in the treatment of obesity.


Assuntos
Tecido Adiposo Marrom , Receptor Tipo 2 de Angiotensina , Animais , Masculino , Camundongos , Adipócitos Marrons , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
J Lipid Res ; 53(12): 2708-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053693

RESUMO

StarD5 belongs to the StarD4 subfamily of steroidogenic acute regulatory lipid transfer (START) domain proteins. In macrophages, StarD5 is found in the cytosol and maintains a loose association with the Golgi. Like StarD1 and StarD4, StarD5 is known to bind cholesterol. However, its function and regulation remain poorly defined. Recently, it has been shown that its mRNA expression is induced in response to different inducers of endoplasmic reticulum (ER) stress. However, the molecular mechanism(s) involved in the induction of StarD5 expression during ER stress is not known. Here we show that in 3T3-L1 cells, the ER stressor thapsigargin increases intracellular free cholesterol due to an increase in HMG-CoA reductase expression. Activation of StarD5 expression is mediated by the transcriptional ER stress factor XBP-1. Additionally, the induction of ER stress stabilizes the StarD5 mRNA. Furthermore, StarD5 protein is mainly localized in the nucleus, and upon ER stress, it redistributes away from the nucleus, localizing prominently to the cytosol and membranes. These results reveal the increase in StarD5 expression and protein redistribution during the cell protective phase of the ER stress, suggesting a role for StarD5 in cholesterol metabolism during the ER stress response.


Assuntos
Membrana Celular/química , Núcleo Celular/química , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/genética , Células 3T3-L1 , Proteínas Adaptadoras de Transporte Vesicular , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
Biochim Biophys Acta ; 1811(10): 597-606, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767660

RESUMO

StarD4 is a member of the StarD4 subfamily of START domain proteins with a characteristic lipid binding pocket specific for cholesterol. The objective of this study was to define StarD4 subcellular localization, regulation, and function. Immunobloting showed that StarD4 is highly expressed in the mouse fibroblast cell line 3T3-L1, in human THP-1 macrophages, Kupffer cells (liver macrophages), and hepatocytes. In 3T3-L1 cells and THP-1 macrophages, StarD4 protein appeared localized to the cytoplasm and the endoplasmic reticulum (ER). More specifically, in THP-1 macrophages StarD4 co-localized to areas of the ER enriched in Acyl-CoA:cholesterol acyltransferase-1 (ACAT-1), and was closely associated with budding lipid droplets. The addition of purified StarD4 recombinant protein to an in vitro assay increased ACAT activity 2-fold, indicating that StarD4 serves as a rate-limiting step in cholesteryl ester formation by delivering cholesterol to ACAT-1-enriched ER. In addition, StarD4 protein was found to be highly regulated and to redistribute in response to sterol levels. In summary, these observations, together with our previous findings demonstrating the ability of increased StarD4 expression to increase bile acid synthesis and cholesteryl ester formation, provide strong evidence for StarD4 as a highly regulated, non-vesicular, directional, intracellular transporter of cholesterol which plays a key role in the maintenance of intracellular cholesterol homeostasis.


Assuntos
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células 3T3-L1 , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Immunoblotting , Técnicas In Vitro , Fígado/metabolismo , Lovastatina/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteróis/farmacologia
11.
Biochem Pharmacol ; 206: 115305, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272599

RESUMO

The incidence of obesity and its related disorders has increased dramatically in recent years and has become a pandemic. Adipose tissue is a crucial regulator of these diseases due to its endocrine capacity. Thus, understanding adipose tissue metabolism is essential to finding new effective therapeutic approaches. The "omic" revolution has identified new concepts about the complexity of the signaling pathways involved in the pathophysiology of adipose tissue-associated disorders. Specifically, advances in transcriptomics have allowed its application in clinical practice and primary or secondary prevention. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of adipose tissue since they can modulate gene expression at the epigenetic, transcriptional, and post-transcriptional levels. They interact with DNA, RNA, protein complexes, other non-coding RNAs, and microRNAs to regulate a wide range of physiological and pathological processes. Here, we review the emerging field of lncRNAs, including how they regulate adipose tissue biology, and discuss circulating lncRNAs, which may represent a turning point in the diagnosis and treatment of adipose tissue-associated disorders. We also highlight potential biomarkers of obesity and diabetes that could be considered as therapeutic targets.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/metabolismo , Transcriptoma , Obesidade/genética , Obesidade/metabolismo
12.
Front Physiol ; 13: 885185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936915

RESUMO

This study aimed to analyze the influence of the peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1 alpha (PPARGC1A) gene rs8192678 C>T polymorphism on different health-related parameters in male and female young adults. The PPARGC1A gene rs8192678 polymorphism was ascertained by polymerase chain reaction in 74 healthy adults (28 women; 22.72 ± 4.40 years) from Andalusia (Spain). Health-related variables included cardiometabolic risk, anthropometry and body composition, biochemical parameters, insulin sensitivity (QUICKI and HOMA-IR indexes), blood pressure (BP) at rest and after exercise, diet, basal metabolism, physical activity, maximal fat oxidation, and cardiorespiratory fitness. Our results showed differences by PPARGC1A gene rs8192678 C>T polymorphism in body mass (p = 0.002), body mass index (p = 0.024), lean body mass (p = 0.024), body fat (p = 0.032), waist circumference (p = 0.020), and BP recovery ratio (p < 0.001). The recessive model (CC vs. CT/TT) showed similar results but also with differences in basal metabolism (p = 0.045) and total energy expenditure (p = 0.024). A genotype*sex interaction was found in the QUICKI index (p = 0.016), with differences between CC and CT/TT in men (p = 0.049) and between men and women inside the CT/TT group (p = 0.049). Thus, the PPARGC1A gene rs8192678 C>T polymorphism is associated with body composition, basal metabolism, total energy expenditure, and BP recovery, where the CC genotype confers a protective effect. Moreover, our study highlighted sexual dimorphism in the influence of PPARGC1A gene rs8192678 C>T polymorphism on the QUICKI index.

13.
Mol Ther Nucleic Acids ; 29: 76-87, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35721225

RESUMO

Despite the extraordinary advances achieved to beat COVID-19 disease, many questions remain unsolved, including the mechanisms of action of SARS-CoV-2 and which factors determine why individuals respond so differently to the viral infection. Herein, we performed an in silico analysis to identify host microRNA targeting ACE2, TMPRSS2, and/or RAB14, all genes known to participate in viral entry and replication. Next, the levels of six microRNA candidates previously linked to viral and respiratory-related pathologies were measured in the serum of COVID-19-negative controls (n = 16), IgG-positive COVID-19 asymptomatic individuals (n = 16), and critical COVID-19 patients (n = 17). Four of the peripheral microRNAs analyzed (hsa-miR-32-5p, hsa-miR-98-3p, hsa-miR-423-3p, and hsa-miR-1246) were upregulated in COVID-19 critical patients compared with COVID-19-negative controls. Moreover, hsa-miR-32-5p and hsa-miR-1246 levels were also altered in critical versus asymptomatic individuals. Furthermore, these microRNA target genes were related to viral infection, inflammatory response, and coagulation-related processes. In conclusion, SARS-CoV-2 promotes the alteration of microRNAs targeting the expression of key proteins for viral entry and replication, and these changes are associated with disease severity. The microRNAs identified could be taken as potential biomarkers of COVID-19 progression as well as candidates for future therapeutic approaches against this disease.

14.
Rev Esp Cardiol (Engl Ed) ; 74(9): 740-749, 2021 Sep.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33051165

RESUMO

INTRODUCTION AND OBJECTIVES: The expression levels of microRNA-16-5p (miR-16) are upregulated in ischemic cardiomyopathy and in animal models of ischemic dilated cardiomyopathy (iDCM), inducing myocardial apoptosis. We investigated the role of miR-16 in the adaptive cellular response associated with endoplasmic reticulum (ER) stress and autophagy in the apoptotic iDCM environment. METHODS: We quantified the miR-16 plasma levels of 168 participants-76 controls, 60 iDCM patients, and 32 familial DCM patients with the pathogenic variant of BAG3-by quantitative real-time polymerase chain reaction and correlated the levels with patient variables. The effects of intracellular miR-16 overexpression were analyzed in a human cardiac cell line. Apoptosis and cell viability were measured, as well as the levels of markers associated with ER stress, cardiac injury, and autophagy. RESULTS: Plasma miR-16 levels were upregulated in iDCM patients (P=.039). A multivariate logistic regression model determined the association of miR-16 with iDCM clinical variables (P <.001). In vitro, miR-16 overexpression increased apoptosis (P=.02) and reduced cell viability (P=.008). Furthermore, it induced proapoptotic components of ER stress, based on upregulation of the PERK/CHOP pathway. However, we observed augmentation of autophagic flux (P <.001) without lysosomal blockade by miR-16 as a possible cytoprotective mechanism. CONCLUSIONS: MiR-16 is specifically associated with iDCM. In an ischemic setting, miR-16 activates ER stress and promotes inflammation followed by autophagy in human cardiac cells. Thus, autophagy may be an attempt to maintain cellular homeostasis in response to misfolded/aggregated proteins related to ER stress, prior to apoptosis.


Assuntos
Cardiomiopatia Dilatada , MicroRNAs , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Biomarcadores , Cardiomiopatia Dilatada/genética , Estresse do Retículo Endoplasmático , Humanos , MicroRNAs/genética
15.
Rev Esp Cardiol (Engl Ed) ; 74(2): 167-174, 2021 Feb.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31882390

RESUMO

INTRODUCTION AND OBJECTIVES: The prognosis of asymptomatic severe aortic stenosis (AS) has not been widely documented in elderly patients who are frequently frail and have comorbidities. We sought to analyze the factors that influence early mortality in geriatric patients with asymptomatic severe AS. METHODS: This ambispective cohort study included 104 patients aged 70 years or older with asymptomatic severe AS. Epidemiological, geriatric, clinical and echocardiographic variables were collected and compared between frail and nonfrail patients. During follow-up, the time from diagnosis to mortality and the causes of death were recorded. RESULTS: Overall, 59.6% of the patients were frail. During follow-up, 69.4% of the frail patients died, with a median time to mortality of 2.52 years (95%CI, 1.36-3.69). The overall 1-year survival rate in frail patients was 76%. On multivariate analysis, age (HR, 2.47; 95%CI, 1.00-6.12), a Charlson comorbidity index ≥ 5 (HR, 3.75; 95%CI, 1.47-9.52) and frailty (HR, 6.67; 95%CI, 1.43-9.52) were independently related to mortality. In total, 8.7% of the patients had a Charlson comorbidity index ≥ 5, and all these patients died during follow-up, with a median survival of 1.01 years (95%CI, 0.36-1.67). The area under the receiver operating characteristic curve of the Charlson index was 0.739 (95%CI, 0.646-0.832). In this population, values ≥ 5 showed high specificity (100%) but low sensitivity. CONCLUSIONS: A high prevalence of frailty was present in geriatric patients with asymptomatic severe AS. Age, a Charlson index ≥ 5 and frailty were independent factors for mortality, conferring an unfavorable short-term prognosis.


Assuntos
Estenose da Valva Aórtica/mortalidade , Fragilidade/complicações , Avaliação Geriátrica/métodos , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico , Estudos de Coortes , Comorbidade , Idoso Fragilizado , Fragilidade/mortalidade , Humanos , Mortalidade , Estudos Prospectivos , Medição de Risco , Fatores de Risco
16.
Sci Rep ; 11(1): 7517, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824379

RESUMO

The left ventricular (LV) ejection fraction (EF) is key to prognosis in dilated cardiomyopathy (DCM). Circulating microRNAs have emerged as reliable biomarkers for heart diseases, included DCM. Clinicians need improved tools for greater clarification of DCM EF categorization, to identify high-risk patients. Thus, we investigated whether microRNA profiles can categorize DCM patients based on their EF. 179-differentially expressed circulating microRNAs were screened in two groups: (1) non-idiopathic DCM; (2) idiopathic DCM. Then, 26 microRNAs were identified and validated in the plasma of ischemic-DCM (n = 60), idiopathic-DCM (n = 55) and healthy individuals (n = 44). We identified fourteen microRNAs associated with echocardiographic variables that differentiated idiopathic DCM according to the EF degree. A predictive model of a three-microRNA (miR-130b-3p, miR-150-5p and miR-210-3p) combined with clinical variables (left bundle branch block, left ventricle end-systolic dimension, lower systolic blood pressure and smoking habit) was obtained for idiopathic DCM with a severely reduced-EF. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. Bioinformatics analysis revealed that miR-150-5p and miR-210-3p target genes might interact with each other with a high connectivity degree. In conclusion, our results revealed a three-microRNA signature combined with clinical variables that highly discriminate idiopathic DCM categorization. This is a potential novel prognostic biomarker with high clinical value.


Assuntos
Cardiomiopatia Dilatada/genética , MicroRNA Circulante/genética , Volume Sistólico/genética , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/fisiopatologia , MicroRNA Circulante/sangue , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Plasma , Prognóstico , Curva ROC , Volume Sistólico/fisiologia , Transcriptoma/genética , Disfunção Ventricular Esquerda/complicações , Função Ventricular Esquerda
17.
J Mol Med (Berl) ; 99(12): 1711-1725, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498126

RESUMO

Dilated cardiomyopathy (DCM) is the third most common cause of heart failure. The multidisciplinary nature of testing - involving genetics, imaging, or cardiovascular techniques - makes its diagnosis challenging. Novel and reliable biomarkers are needed for early identification and tailored personalized management. Peripheral circular RNAs (circRNAs), a leading research topic, remain mostly unexplored in DCM. We aimed to assess whether peripheral circRNAs are expressed differentially among etiology-based DCM. The study was based on a case-control multicentric study. We enrolled 130 subjects: healthy controls (n = 20), idiopathic DCM (n = 30), ischemic DCM (n = 20), and familial DCM patients which included pathogen variants of (i) LMNA gene (n = 30) and (ii) BCL2-associated athanogene 3 (BAG3) gene (n = 30). Differentially expressed circRNAs were analyzed in plasma samples by quantitative RT-PCR and correlated to relevant systolic and diastolic parameters. The pathophysiological implications were explored through bioinformatics tools. Four circRNAs were overexpressed compared to controls: hsa_circ_0003258, hsa_circ_0051238, and hsa_circ_0051239 in LMNA-related DCM and hsa_circ_0089762 in the ischemic DCM cohort. The obtained areas under the curve confirm the discriminative capacity of circRNAs. The circRNAs correlated with some diastolic and systolic echocardiographic parameters with notable diagnostic potential in DCM. Circulating circRNAs may be helpful for the etiology-based diagnosis of DCM as a non-invasive biomarker. KEY MESSAGES: The limitations of cardiac diagnostic imaging and the absence of a robust biomarker reveal the need for a diagnostic tool for dilated cardiomyopathy (DCM). The circular RNA (circRNA) expression pattern is paramount for categorizing the DCM etiologies. Our peripheral circRNAs fingerprint discriminates between various among etiology-based DCM and correlates with some echocardiographic parameters. We provide a potential non-invasive biomarker for the etiology-based diagnosis of LMNA-related DCM and ischemic DCM.


Assuntos
Cardiomiopatia Dilatada/genética , RNA Circular/sangue , Adulto , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Transl Res ; 218: 1-15, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032554

RESUMO

Etiology-based diagnosis of dilated cardiomyopathy (DCM) is challenging. We evaluated whether peripheral microRNAs (miRNAs) could be used to characterize the DCM etiology. We investigated the miRNA plasma profiles of 254 subjects that comprised 5 groups: Healthy subjects (n = 70), idiopathic DCM patients (n = 55), ischemic DCM patients (n = 60) and 2 groups of patients with pathogenic variants responsible for familial DCM in the LMNA (LMNAMUT, n = 37) and BAG3 (BAG3MUT, n = 32) genes. Diagnostic performance was assessed using receiver operating characteristic curves. In a screening study (n = 30), 179 miRNAs robustly detected in plasma samples were profiled in idiopathic DCM and carriers of pathogenic variants. After filtering, 26 miRNA candidates were selected for subsequent quantification in the whole study population. In the validation study, a 6-miRNA panel identified familial DCM with an AUC (95% confidence interval [CI]) of 87.8 (82.0-93.6). The 6-miRNA panel also distinguished between specific DCM etiologies with AUCs ranging from 85.9 to 89.9. Only 1 to 10 of the subjects in the first and second tertiles of the 6-miRNA panel were patients with familial DCM. Additionally, a 5-miRNA panel showed an AUC (95% CI) of 87.5 (80.4-94.6) for the identification of carriers with pathogenic variants who were phenotypically negative for DCM. The 5-miRNA panel discriminated between carriers and healthy controls with AUCs ranging from 83.2 to 90.8. Again, only 1 to 10 of the subjects in the lowest tertiles of the 5-miRNA panel were carriers of pathogenic variants. In conclusion, miRNA signatures could be used to rule out patients with pathogenic variants responsible for DCM.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , MicroRNAs/sangue , Adulto , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/genética , Estudos de Casos e Controles , Heterozigoto , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
19.
Transl Res ; 215: 86-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505160

RESUMO

Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilation and systolic dysfunction in the absence of abnormal loading conditions or coronary artery disease. This cardiac disorder is a major health problem due to its high prevalence, morbidity, and mortality. DCM is a complex disease with a common phenotype but heterogeneous pathological mechanisms. Early etiological diagnosis and prognosis stratification is crucial for the clinical management of the patient. Advances in imaging technology and genetic tests have provided useful tools for clinical practice. Nevertheless, the assessment of the disease remains challenging. Novel noninvasive indicators are still needed to assist in decision-making. microRNAs (miRNAs), a group of small noncoding RNAs, have been identified as key mediators of cell biology. They are found in a stable form in body fluids and their concentration is altered in response to stress. Previous research has suggested that the miRNA signature constitutes a novel source of noninvasive biomarkers for a wide array of cardiovascular diseases. Specifically, several studies have reported the potential role of miRNAs as clinical indicators among the etiologies of DCM. However, this field has not been reviewed in detail. Here, we summarize the evidence of intracellular and circulating miRNAs in DCM and their usefulness in the development of novel diagnostic, prognostic and therapeutic approaches, with a focus on DCM etiology. Although the findings are still preliminary, due to methodological and technical limitations and the lack of robust population-based studies, miRNAs constitute a promising tool to assist in the clinical management of DCM.


Assuntos
Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/genética , MicroRNAs/genética , Humanos , MicroRNAs/metabolismo , Mutação/genética , Fenótipo
20.
Front Physiol ; 10: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814954

RESUMO

Brown adipose tissue (BAT) dissipates energy to produce heat. Thus, it has the potential to regulate body temperature by thermogenesis. For the last decade, BAT has been in the spotlight due to its rediscovery in adult humans. This is evidenced by over a hundred clinical trials that are currently registered to target BAT as a therapeutic tool in the treatment of metabolic diseases, such as obesity or diabetes. The goal of most of these trials is to activate the BAT thermogenic program via several approaches such as adrenergic stimulation, natriuretic peptides, retinoids, capsinoids, thyroid hormones, or glucocorticoids. However, the impact of BAT activation on total body energy consumption and the potential effect on weight loss is still limited. Other studies have focused on increasing the mass of thermogenic BAT. This can be relevant in obesity, where the activity and abundance of BAT have been shown to be drastically reduced. The aim of this review is to describe pathological processes associated with obesity that may influence the correct differentiation of BAT, such as catecholamine resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. This will shed light on the thermogenic potential of BAT as a therapeutic approach to target obesity-induced metabolic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA