Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Infect Immun ; 91(7): e0009623, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255490

RESUMO

All members of the family Chlamydiaceae have lipopolysaccharides (LPS) that possess a shared carbohydrate trisaccharide antigen, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) that is functionally uncharacterized. A single gene, genus-specific epitope (gseA), is responsible for attaching the tri-Kdo to lipid IVA. To investigate the function of Kdo in chlamydial host cell interactions, we made a gseA-null strain (L2ΔgseA) by using TargeTron mutagenesis. Immunofluorescence microscopy and immunoblotting with a Kdo-specific monoclonal antibody demonstrated that L2ΔgseA lacked Kdo. L2ΔgseA reacted by immunoblotting with a monoclonal antibody specific for a conserved LPS glucosamine-PO4 epitope, indicating that core lipid A was retained by the mutant. The mutant strain produced a similar number of inclusions as the parental strain but yielded lower numbers of infectious elementary bodies. Transmission electron microscopy of L2ΔgseA-infected cells showed atypical developmental forms and a reduction in the number of elementary bodies. Immunoblotting of dithiothreitol-treated L2ΔgseA-infected cells lysates revealed a marked reduction in outer membrane OmcB disulfide cross-linking, suggesting that the elementary body outer membrane structure was affected by the lack of Kdo. Notably, lactic acid dehydrogenase release by infected cells demonstrated that L2ΔgseA was significantly more cytotoxic to host cells than the wild type. The cytotoxic phenotype may result from an altered outer membrane biogenesis structure and/or function or, conversely, from a direct pathobiological effect of Kdo on an unknown host cell target. These findings implicate a previously unrecognized role for Kdo in host cell interactions that facilitates postinfection host cell survival.


Assuntos
Chlamydia trachomatis , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Sequência de Carboidratos , Epitopos , Açúcares Ácidos , Anticorpos Monoclonais
2.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29463617

RESUMO

The Chlamydia trachomatis plasmid and inclusion membrane protein CT135 are virulence factors in the pathogenesis of murine female genital tract infection. To determine if these virulence factors play a similar role in female nonhuman primates, we infected pig-tailed macaques with the same C. trachomatis strains shown to be important in the murine model. Wild-type C. trachomatis and its isogenic mutant strain deficient in both plasmid and CT135 were used to infect macaques. Macaques were given primary and repeated cervicovaginal challenges with the wild-type and mutant strains. The infection rate, infection duration, and antibody response were similar among macaques infected with both strains. Unexpectedly, colposcopy, laparoscopy, and histologic analysis revealed no substantial genital tract pathology following either primary or repeated cervicovaginal challenges. Cytokine analysis of cervicovaginal secretions from both challenged groups revealed low concentrations of interleukin 1ß (IL-1ß) and elevated levels of the interleukin 1 receptor agonist (IL-1RA). We propose that an imbalance of IL-1ß and IL-1RA in macaques is the reason for the mild inflammatory responses observed in infected urogenital tissues. Thus, understanding the pathobiology of chlamydial infection requires a better understanding of host epigenetic and chlamydial genetic factors. Our findings also have implications for understanding the high frequency of asymptomatic infections in humans.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Macaca/imunologia , Plasmídeos/imunologia , Infecções do Sistema Genital/imunologia , Fatores de Virulência/imunologia , Animais , Feminino , Humanos , Camundongos , Plasmídeos/genética , Fatores de Virulência/genética
3.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461392

RESUMO

We studied infection and immunity of hysterectomized mice infected with Chlamydia muridarum and Chlamydia trachomatis to determine if there were differences between these species in their ability to infect vaginal squamous epithelial cells in vivo independently of proximal upper genital tract tissues. We found that C. muridarum readily colonized and infected vaginal squamous epithelial cells, whereas C. trachomatis did not. Primary infection of the vaginal epithelium with C. muridarum produced infections of a duration longer than that reported for normal mice. Infection resulted in an inflammatory response in the vagina characterized by neutrophils and infiltrating submucosal plasma cells consisting primarily of T cells. Despite the delayed clearance, rechallenged C. muridarum-infected mice were highly immune. Mice vaginally infected with C. muridarum produced serum and vaginal wash antibodies and an antigen-specific gamma interferon-dominated Th1-biased T cell response. By comparison, mice vaginally infected with C. trachomatis exhibited transient low-burden infections, produced no detectable tissue inflammatory response, and failed to seroconvert. We discuss how these marked differences in the biology of vaginal infection between these otherwise genetically similar species are possibly linked to pathogen-specific virulence genes and how they may influence pathology and immunity in the upper genital tract.


Assuntos
Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/imunologia , Chlamydia trachomatis/crescimento & desenvolvimento , Histerectomia , Vagina/microbiologia , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/imunologia , Feminino , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
4.
J Immunol ; 192(10): 4648-54, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24711617

RESUMO

Trachoma, caused by the obligate intracellular organism Chlamydia trachomatis, is the world's leading cause of preventable blindness for which a vaccine is needed. We have previously shown that a plasmid-deficient live-attenuated trachoma vaccine delivered ocularly to macaques elicited either solid or partial protective immunity against a virulent ocular challenge. Solidly protected macaques shared the same MHC class II alleles implicating CD4(+) T cells in superior protective immunity. Understandably, we sought to define T cell immune correlates in these animals to potentially improve vaccine efficacy. In this study, following a 2-y resting period, these macaques were boosted i.m. with the live-attenuated trachoma vaccine and their peripheral T cell anamnestic responses studied. Both solidly and partially protected macaques exhibited a CD4(+) and CD8(+) T cell anamnestic response following booster immunization. CD8(+) but not CD4(+) T cells from solidly protected macaques proliferated against soluble chlamydial Ag. We observed a more rapid T cell inflammatory cytokine response in tears of solidly protected animals following ocular rechallenge. Most notably, depletion of CD8(+) T cells in solidly protected macaques completely abrogated protective immunity. Collectively, our findings support the conclusion that CD8(+) T cells play an important but unexpected role in live-attenuated trachoma vaccine-mediated protective immunity.


Assuntos
Vacinas Bacterianas/farmacologia , Linfócitos T CD8-Positivos/imunologia , Chlamydia trachomatis/imunologia , Tracoma/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Macaca nemestrina , Masculino , Tracoma/imunologia , Tracoma/patologia , Vacinas Atenuadas/farmacologia
5.
Infect Immun ; 83(2): 534-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404022

RESUMO

Chlamydia trachomatis is an obligate intracellular epitheliotropic bacterial pathogen of humans. Infection of the eye can result in trachoma, the leading cause of preventable blindness in the world. The pathophysiology of blinding trachoma is driven by multiple episodes of reinfection of conjunctival epithelial cells, producing an intense chronic inflammatory response resulting in submucosal tissue remodeling and scarring. Recent reports have shown that infection with trachoma organisms lacking the cryptic chlamydial plasmid is highly attenuated in macaque eyes, a relevant experimental model of human trachoma infection. To better understand the molecular basis of plasmid-mediated infection attenuation and the potential modulation of host immunity, we conducted transcriptional profiling of human epithelial cells infected with C. trachomatis plasmid-bearing (A2497) and plasmid-deficient (A2497P(-)) organisms. Infection of human epithelial cells with either strain increased the expression of host genes coding for proinflammatory (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage colony-stimulating factor [MCSF], interleukin-6 [IL-6], IL-8, IL-1α, CXCL1, CXCL2, CXCL3, intercellular adhesion molecule 1 [ICAM1]), chemoattraction (CCL20, CCL5, CXCL10), immune suppression (PD-L1, NFKB1B, TNFAIP3, CGB), apoptosis (CASP9, FAS, IL-24), and cell growth and fibrosis (EGR1 and IL-20) proteins. Statistically significant increases in the levels of expression of many of these genes were found in A2497-infected cells compared to the levels of expression in A2497P(-)-infected cells. Our findings suggest that the chlamydial plasmid plays a focal role in the host cell inflammatory response to infection and immune avoidance. These results provide new insights into the role of the chlamydial plasmid as a chlamydial virulence factor and its contributions to trachoma pathogenesis.


Assuntos
Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Plasmídeos/genética , Tracoma/patologia , Fatores de Virulência/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais , Perfilação da Expressão Gênica , Glicogênio/metabolismo , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucinas/biossíntese , Interleucinas/genética , Tracoma/imunologia , Tracoma/microbiologia
6.
BMC Microbiol ; 15: 194, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424482

RESUMO

BACKGROUND: Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism's intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. METHODS: SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. RESULTS: The strain harboring the SNV with the most marked impact on proteolysis (cthtrA P370L) was detected to have a significant reduction in the production of infectious elementary bodies. CONCLUSIONS: This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.


Assuntos
Substituição de Aminoácidos , Chlamydia trachomatis/metabolismo , Corpos de Inclusão/microbiologia , Proteínas Mutantes/metabolismo , Serina Proteases/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Chlamydia trachomatis/genética , Análise Mutacional de DNA , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/genética , Proteólise , Serina Proteases/genética , Fatores de Virulência/genética
7.
J Bacteriol ; 196(16): 2989-3001, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914180

RESUMO

Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.


Assuntos
Antibacterianos/farmacologia , Compostos de Benzilideno/farmacologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/crescimento & desenvolvimento , Análise Mutacional de DNA , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
Infect Immun ; 82(7): 2756-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733093

RESUMO

Chlamydia trachomatis is an obligate intracellular mucosotropic pathogen of significant medical importance. It is the etiological agent of blinding trachoma and bacterial sexually transmitted diseases, infections that afflict hundreds of millions of people globally. The C. trachomatis polymorphic membrane protein D (PmpD) is a highly conserved autotransporter and the target of broadly cross-reactive neutralizing antibodies; however, its role in host-pathogen interactions is unknown. Here we employed a targeted reverse genetics approach to generate a pmpD null mutant that was used to define the role of PmpD in the pathogenesis of chlamydial infection. We show that pmpD is not an essential chlamydial gene and the pmpD null mutant has no detectable deficiency in cultured murine cells or in a murine mucosal infection model. Notably, however, the pmpD null mutant was significantly attenuated for macaque eyes and cultured human cells. A reduction in pmpD null infection of human endocervical cells was associated with a deficiency in chlamydial attachment to cells. Collectively, our results show that PmpD is a chlamydial virulence factor that functions in early host-cell interactions. This study is the first of its kind using reverse genetics to evaluate the contribution of a C. trachomatis gene to disease pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Macaca fascicularis , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Mutação
9.
Proc Natl Acad Sci U S A ; 108(17): 7189-93, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482792

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects hundreds of millions of individuals globally, causing blinding trachoma and sexually transmitted disease. More effective chlamydial control measures are needed, but progress toward this end has been severely hampered by the lack of a tenable chlamydial genetic system. Here, we describe a reverse-genetic approach to create isogenic C. trachomatis mutants. C. trachomatis was subjected to low-level ethyl methanesulfonate mutagenesis to generate chlamydiae that contained less then one mutation per genome. Mutagenized organisms were expanded in small subpopulations that were screened for mutations by digesting denatured and reannealed PCR amplicons of the target gene with the mismatch specific endonuclease CEL I. Subpopulations with mutations were then sequenced for the target region and plaque-cloned if the desired mutation was detected. We demonstrate the utility of this approach by isolating a tryptophan synthase gene (trpB) null mutant that was otherwise isogenic to its parental clone as shown by de novo genome sequencing. The mutant was incapable of avoiding the anti-microbial effect of IFN-γ-induced tryptophan starvation. The ability to genetically manipulate chlamydiae is a major advancement that will enhance our understanding of chlamydial pathogenesis and accelerate the development of new anti-chlamydial therapeutic control measures. Additionally, this strategy could be applied to other medically important bacterial pathogens with no or difficult genetic systems.


Assuntos
Chlamydia trachomatis/genética , Mutagênese , Mutação , Triptofano Sintase/genética , Antineoplásicos Alquilantes/farmacologia , Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/genética , Chlamydia trachomatis/enzimologia , Metanossulfonato de Etila/farmacologia , Humanos , Triptofano Sintase/metabolismo
10.
Infect Immun ; 81(3): 636-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319558

RESUMO

Chlamydia trachomatis causes chronic inflammatory diseases of the eye and genital tract and has global medical importance. The chlamydial plasmid plays an important role in the pathophysiology of these diseases, as plasmid-deficient organisms are highly attenuated. The cryptic plasmid carries noncoding RNAs and eight conserved open reading frames (ORFs). To understand plasmid gene function, we generated plasmid shuttle vectors with deletions in each of the eight ORFs. The individual deletion mutants were used to transform chlamydiae and the transformants were characterized phenotypically and at the transcriptional level. We show that pgp1, -2, -6, and -8 are essential for plasmid maintenance, while the other ORFs can be deleted and the plasmid stably maintained. We further show that a pgp4 knockout mutant exhibits an in vitro phenotype similar to its isogenic plasmidless strain, in terms of abnormal inclusion morphology and lack of glycogen accumulation. Microarray and qRT-PCR analysis revealed that Pgp4 is a transcriptional regulator of plasmid-encoded pgp3 and multiple chromosomal genes, including the glycogen synthase gene glgA, that are likely important in chlamydial virulence. Our findings have major implications for understanding the plasmid's role in chlamydial pathogenesis at the molecular level.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Plasmídeos/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Cromossomos Bacterianos , Deleção de Genes , Camundongos , Plasmídeos/genética , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência
11.
J Immunol ; 186(12): 7120-6, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21543647

RESUMO

Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1ß production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation.


Assuntos
Apoptose , Proliferação de Células , Infecções por Chlamydophila/imunologia , Chlamydophila pneumoniae/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Infecções por Chlamydophila/patologia , Chlamydophila pneumoniae/imunologia , Humanos , Inflamação/microbiologia , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/microbiologia
12.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804183

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that causes blinding trachoma and sexually transmitted disease. The chlamydial plasmid is a critical virulence factor in the pathogenesis of these diseases. Plasmid gene protein 4 (Pgp4) plays a major role in chlamydial virulence by regulating the expression of both chromosomal genes and Pgp3. Despite the importance of Pgp4 in mediating lytic exit from host cells the pathogenic mechanism by which it functions is unknown. CT084 is a highly conserved chromosomal gene with homology to phospholipase D. We showed CT084 expression is regulated by Pgp4 and expressed late in the chlamydial developmental cycle. To investigate the function of CT084 in chlamydial lytic exit from infected cells, we made a CT084 null strain (ct084::bla) by using Targetron. The ct084::bla strain grew normally in vitro compared to wild-type strain; however, the strain did not lyse infected cells and produced significantly less and smaller plaques. Collectively, our finding shows Pgp4-regulated CT084-mediated chlamydia lytic exit from infected host cells.


Assuntos
Infecções por Chlamydia , Tracoma , Humanos , Chlamydia trachomatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Fenótipo , Infecções por Chlamydia/microbiologia
13.
J Med Primatol ; 40(4): 214-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21781129

RESUMO

BACKGROUND: Sexually transmitted infections (STIs) are associated with an increased risk of HIV infection. To model the interaction between STIs and HIV infection, we evaluated the capacity of the pigtail macaque model to sustain triple infection with Trichomonas vaginalis, Chlamydia trachomatis, and SHIV(SF162P3). METHODS: Seven SHIV(SF162P3) -infected pigtail macaques were inoculated with T. vaginalis only (n = 2), C. trachomatis only (n = 1), both T. vaginalis and C. trachomatis (n = 2), or control media (no STI; n = 2). Infections were confirmed by culture and/or nucleic acid testing. Genital mucosa was visualized by colposcopy. RESULTS: Characteristic gynecologic signs were observed for both STIs, but not in control animals. Manifestations were most prominent at days 7-10 post-infection. STIs persisted between 4 and 6 weeks and were cleared with antibiotics. CONCLUSIONS: These pilot studies demonstrate the first successful STI-SHIV triple infection of pigtail macaques, with clinical presentation of genital STI symptoms similar to those observed in humans.


Assuntos
Infecções por Chlamydia/patologia , Modelos Animais de Doenças , Infecções por HIV/complicações , Infecções Sexualmente Transmissíveis/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vaginite por Trichomonas/patologia , Animais , Colo do Útero/microbiologia , Colo do Útero/parasitologia , Colo do Útero/patologia , Infecções por Chlamydia/sangue , Infecções por Chlamydia/complicações , Chlamydia trachomatis , Colposcopia , Feminino , Infecções por HIV/sangue , Infecções por HIV/virologia , Macaca nemestrina , Projetos Piloto , Infecções Sexualmente Transmissíveis/sangue , Infecções Sexualmente Transmissíveis/microbiologia , Infecções Sexualmente Transmissíveis/parasitologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Vírus da Imunodeficiência Símia , Vaginite por Trichomonas/sangue , Vaginite por Trichomonas/complicações , Trichomonas vaginalis , Doenças do Colo do Útero/sangue , Doenças do Colo do Útero/complicações , Doenças do Colo do Útero/microbiologia , Doenças do Colo do Útero/parasitologia , Vagina/microbiologia , Vagina/parasitologia , Vagina/patologia
14.
J Immunol ; 182(12): 8063-70, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494332

RESUMO

A vaccine is likely the most effective strategy for controlling human chlamydial infections. Recent studies have shown immunization with Chlamydia muridarum major outer membrane protein (MOMP) can induce significant protection against infection and disease in mice if its native trimeric structure is preserved (nMOMP). The objective of this study was to investigate the immunogenicity and vaccine efficacy of Chlamydia trachomatis nMOMP in a nonhuman primate trachoma model. Cynomolgus monkeys (Macaca fascicularis) were immunized systemically with nMOMP, and monkeys were challenged ocularly. Immunization induced high serum IgG and IgA ELISA Ab titers, with Abs displaying high strain-specific neutralizing activity. The PBMCs of immunized monkeys produced a broadly cross-reactive, Ag-specific IFN-gamma response equivalent to that induced by experimental infection. Immunized monkeys exhibited a significant decrease in infectious burden during the early peak shedding periods (days 3-14). However, at later time points, they exhibited no difference from control animals in either burden or duration of infection. Immunization had no effect on the progression of ocular disease. These results show that systemically administered nMOMP is highly immunogenic in nonhuman primates and elicits partially protective immunity against ocular chlamydial challenge. This is the first time a subunit vaccine has shown a significant reduction in ocular shedding in nonhuman primates. A partially protective vaccine, particularly one that reduces infectious burden after primary infection of children, could interrupt the natural trachoma reinfection cycle. This would have a beneficial effect on the transmission between children and sensitized adults which drives blinding inflammatory disease.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/imunologia , Macaca fascicularis/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos , Infecções por Chlamydia/patologia , Infecções por Chlamydia/transmissão , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Cinética , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Desnaturação Proteica , Titulometria
15.
mBio ; 12(3): e0117921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34101486

RESUMO

Chlamydia are obligate intracellular Gram-negative bacteria distinguished by a unique developmental biology confined within a parasitophorous vacuole termed an inclusion. The chlamydial plasmid is a central virulence factor in the pathogenesis of infection. Plasmid gene protein 4 (Pgp4) regulates the expression of plasmid gene protein 3 (Pgp3) and chromosomal glycogen synthase (GlgA), virulence factors secreted from the inclusion to the host cytosol by an unknown mechanism. Here, we identified a plasmid-dependent secretion system for the cytosolic delivery of Pgp3 and GlgA. The secretion system consisted of a segregated population of globular structures originating from midcycle reticulate bodies. Globular structures contained the Pgp4-regulated proteins CT143, CT144, and CT050 in addition to Pgp3 and GlgA. Genetic replacement of Pgp4 with Pgp3 or GlgA negated the formation of globular structures, resulting in retention of Pgp3 and GlgA in chlamydial organisms. The generation of globular structures and secretion of virulence factors occurred independently of type 2 and type 3 secretion systems. Globular structures were enriched with lipopolysaccharide but lacked detectable major outer membrane protein and heat shock protein 60, implicating them as outer membrane vesicles. Thus, we have discovered a novel chlamydial plasmid-dependent secretion system that transports virulence factor cargo from the chlamydial inclusion to the host cytosol. IMPORTANCE The Chlamydia trachomatis plasmid regulates the expression and secretion of immune evasion virulence factors to the host cytosol by an unknown mechanism. In this study, we identified a novel plasmid gene protein 4 (Pgp4)-dependent secretion system. The system consists of globular structures distinct from typical chlamydial developmental forms that export Pgp3 and GlgA to the host cytosol. Globular structures emerged at mid-chlamydial growth cycle from distinct populations of reticulate bodies. The formation of globular structures occurred independently of known chlamydial secretion systems. These results identify a Pgp4-dependent secretory system required for exporting plasmid regulated virulence factors to the host cytosol.


Assuntos
Sistemas de Secreção Bacterianos/genética , Chlamydia trachomatis/genética , Citosol/metabolismo , Plasmídeos/genética , Fatores de Virulência/genética , Antígenos de Bactérias/genética , Sistemas de Secreção Bacterianos/metabolismo , Linhagem Celular , Técnicas de Transferência de Genes , Humanos
16.
Nat Commun ; 12(1): 5454, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526512

RESUMO

Chlamydia trachomatis infection causes severe inflammatory disease resulting in blindness and infertility. The pathophysiology of these diseases remains elusive but myeloid cell-associated inflammation has been implicated. Here we show NLRP3 inflammasome activation is essential for driving a macrophage-associated endometritis resulting in infertility by using a female mouse genital tract chlamydial infection model. We find the chlamydial parasitophorous vacuole protein CT135 triggers NLRP3 inflammasome activation via TLR2/MyD88 signaling as a pathogenic strategy to evade neutrophil host defense. Paradoxically, a consequence of CT135 mediated neutrophil killing results in a submucosal macrophage-associated endometritis driven by ATP/P2X7R induced NLRP3 inflammasome activation. Importantly, macrophage-associated immunopathology occurs independent of macrophage infection. We show chlamydial infection of neutrophils and epithelial cells produce elevated levels of extracellular ATP. We propose this source of ATP serves as a DAMP to activate submucosal macrophage NLRP3 inflammasome that drive damaging immunopathology. These findings offer a paradigm of sterile inflammation in infectious disease pathogenesis.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neutrófilos/imunologia , Receptores Purinérgicos P2X7/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Chlamydia/fisiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Modelos Animais de Doenças , Feminino , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
17.
Infect Immun ; 78(6): 2691-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351143

RESUMO

Chlamydia trachomatis strains are obligate intracellular human pathogens that share near genomic synteny but have distinct infection and disease organotropisms. The genetic basis for differences in the pathogen-host relationship among chlamydial strains is linked to a variable region of chlamydial genomes, termed the plasticity zone (PZ). Two groups of PZ-encoded proteins, the membrane attack complex/perforin (MACPF) domain protein (CT153) and members of the phospholipase D-like (PLD) family, are related to proteins that modify membranes and lipids, but the functions of CT153 and the PZ PLDs (pzPLDs) are unknown. Here, we show that full-length CT153 (p91) was present in the elementary bodies (EBs) of 15 C. trachomatis reference strains. CT153 underwent a rapid infection-dependent proteolytic cleavage into polypeptides of 57 and 41 kDa that was independent of de novo chlamydial protein synthesis. Following productive infection, p91 was expressed during the mid-developmental cycle and was similarly processed into p57 and p41 fragments. Infected-cell fractionation studies showed that insoluble fractions contained p91, p57, and p41, whereas only p91 was found in the soluble fraction, indicating that unprocessed CT153 may be secreted. Finally, CT153 localized to a distinct population of reticulate bodies, some of which were in contact with the inclusion membrane.


Assuntos
Proteínas de Bactérias/fisiologia , Chlamydia trachomatis/patogenicidade , Fatores de Virulência/fisiologia , Proteínas de Bactérias/metabolismo , Fracionamento Celular , Membrana Celular/química , Chlamydia trachomatis/química , Citosol/química , Humanos , Hidrólise , Corpos de Inclusão/química , Fatores de Virulência/metabolismo
18.
Infect Immun ; 78(9): 3660-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547745

RESUMO

Chlamydia trachomatis is a human pathogen of global importance. An obstacle to studying the pathophysiology of human chlamydial disease is the lack of a suitable murine model of C. trachomatis infection. Mice are less susceptible to infection with human isolates due in part to innate mouse-specific host defense mechanisms to which human strains are sensitive. Another possible factor that influences the susceptibility of mice to infection is that human isolates are commonly cultivated in vitro prior to infection of mice; therefore, virulence genes could be lost as a consequence of negative selective pressure. We tested this hypothesis by infecting innate immunity-deficient C3H/HeJ female mice intravaginally with a human serovar D urogenital isolate that had undergone multiple in vitro passages. We observed early and late infection clearance phenotypes. Strains of each phenotype were isolated and then used to reinfect naïve mice. Following infection, the late-clearance strain was significantly more virulent. It caused unvarying infections of much longer durations with greater infectious burdens that naturally ascended to the upper genital tract, causing salpingitis. Despite contrasting in vivo virulence characteristics, the strains exhibited no differences in the results of in vitro infectivity assays or sensitivities to gamma interferon. Genome sequencing of the strains revealed mutations that localized to a single gene (CT135), implicating it as a critical virulence factor. Mutations in CT135 were not unique to serovar D but were also found in multiple oculogenital reference strains. Our findings provide new information about the pathogenomics of chlamydial infection and insights for improving murine models of infection using human strains.


Assuntos
Infecções por Chlamydia/etiologia , Chlamydia trachomatis/patogenicidade , Mutação da Fase de Leitura , Doenças dos Genitais Femininos/etiologia , Fatores de Virulência/genética , Animais , Sequência de Bases , Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Feminino , Doenças dos Genitais Femininos/patologia , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético
19.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817110

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.IMPORTANCEChlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Fatores de Virulência/genética , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citocinas/imunologia , Células Epiteliais/microbiologia , Feminino , Células HeLa , Humanos , Macaca , Camundongos , Camundongos Endogâmicos C57BL
20.
Infect Immun ; 77(1): 508-16, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19001072

RESUMO

Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydia trachomatis/química , Chlamydia trachomatis/metabolismo , Multimerização Proteica , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Eletroforese em Gel de Poliacrilamida/métodos , Células Epiteliais/química , Células Epiteliais/microbiologia , Células HeLa , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA