Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067805

RESUMO

The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.


Assuntos
Neoplasias do Colo , Exossomos , Humanos , Exossomos/química , Microfluídica , Biópsia Líquida/métodos , Biomarcadores/análise , Neoplasias do Colo/diagnóstico , Comunicação Celular
2.
J Biol Chem ; 292(44): 18178-18191, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28893903

RESUMO

Unlike age-matched men, premenopausal women benefit from cardiovascular protection. Estrogens protect against apoptosis of endothelial cells (ECs), one of the hallmarks of endothelial dysfunction leading to cardiovascular disorders, but the underlying molecular mechanisms remain poorly understood. The inflammatory cytokine TNFα causes EC apoptosis while dysregulating the Notch pathway, a major contributor to EC survival. We have previously reported that 17ß-estradiol (E2) treatment activates Notch signaling in ECs. Here, we sought to assess whether in TNFα-induced inflammation Notch is involved in E2-mediated protection of the endothelium. We treated human umbilical vein endothelial cells (HUVECs) with E2, TNFα, or both and found that E2 counteracts TNFα-induced apoptosis. When Notch1 was inhibited, this E2-mediated protection was not observed, whereas ectopic overexpression of Notch1 diminished TNFα-induced apoptosis. Moreover, TNFα reduced the levels of active Notch1 protein, which were partially restored by E2 treatment. Moreover, siRNA-mediated knockdown of estrogen receptor ß (ERß), but not ERα, abolished the effect of E2 on apoptosis. Additionally, the E2-mediated regulation of the levels of active Notch1 was abrogated after silencing ERß. In summary, our results indicate that E2 requires active Notch1 through a mechanism involving ERß to protect the endothelium in TNFα-induced inflammation. These findings could be relevant for assessing the efficacy and applicability of menopausal hormone treatment, because they may indicate that in women with impaired Notch signaling, hormone therapy might not effectively protect the endothelium.


Assuntos
Apoptose , Endotélio Vascular/metabolismo , Estradiol/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor Notch1/agonistas , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor Notch1/química , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
3.
Anal Bioanal Chem ; 410(15): 3533-3545, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29411090

RESUMO

Berberine (BBR) is a natural alkaloid obtained from Berberis species plants, known for its protective effects against several diseases. Among the primary BBR metabolites, berberrubine (M1) showed the highest plasma concentration but few and conflicting data are available regarding its concentration in biological fluids related to its new potential activity on vascular cells. A combined analytical approach was applied to study biodistribution of M1 in comparison with BBR. The optimization of sample clean-up combined with a fully validated HPLC-ESI-MS/MS tailored for M1 allows sufficient detectability and accuracy to be reached in the different studied organs even when administered at low dose, comparable to that assumed by human. A predictive human vascular endothelial cell-based assay to measure intracellular xanthine oxidase has been developed and applied to study unexplored activities of M1 alongside other common activities. Results showed that oral M1 treatment exhibits higher plasma levels than BBR, reaching maximum concentration 400-fold higher than BBR (204 vs 0.5 ng/mL); moreover, M1 exhibits higher concentrations than BBR also in all the biological compartments analyzed. Noteworthy, the two compounds follow two different excretion routes: M1 through urine, while BBR through feces. In vitro studies demonstrated that M1 inhibited intracellular xanthine oxidase activity, one of the major sources of reactive oxygen species in vasculature, with an IC50 = 9.90 ± 0.01 µg/mL and reduced the expression of the inflammatory marker ICAM-1. These peculiar characteristics allow new perspectives to be opened up for the direct use of M1 instead of BBR in endothelial dysfunction treatment.


Assuntos
Anti-Infecciosos/farmacocinética , Anti-Inflamatórios/farmacocinética , Berberina/análogos & derivados , Berberina/farmacocinética , Inibidores Enzimáticos/farmacocinética , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/metabolismo , Anti-Inflamatórios/análise , Anti-Inflamatórios/metabolismo , Berberina/análise , Berberina/metabolismo , Berberis/química , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Distribuição Tecidual , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
4.
Anal Bioanal Chem ; 410(3): 669-677, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29026940

RESUMO

Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.


Assuntos
Técnicas de Química Analítica/métodos , Biologia Computacional/métodos , Medicina de Precisão/métodos , Biomarcadores/análise , Bases de Dados Factuais , Diagnóstico por Imagem/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
5.
J Transl Med ; 15(1): 98, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472949

RESUMO

BACKGROUND: The lack of early diagnosis, progression markers and effective pharmacological treatment has dramatic unfavourable effects on clinical outcomes in patients with peripheral artery disease (PAD). Addressing these issues will require dissecting the molecular mechanisms underlying this disease. We sought to characterize the Notch signaling and atherosclerosis relevant markers in lesions from femoral arteries of symptomatic PAD patients. METHODS: Plaque material from the common femoral, superficial femoral or popliteal arteries of 20 patients was removed by directional atherectomy. RNA was obtained from 9 out of 20 samples and analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). RESULTS: We detected expression of Notch ligands Delta-like 4 (Dll4) and Jagged1 (Jag1), of Notch target genes Hes1, Hey1, Hey2, HeyL and of markers of plaque inflammation and stability such as vascular cell adhesion molecule 1 (VCAM1), smooth muscle 22 (SM22), cyclooxygenase 2 (COX2), Bcl2, CD68 and miRNAs 21-5p, 125a-5p, 126-5p,146-5p, 155-5p, 424-5p. We found an "inflamed plaque" gene expression profile characterized by high Dll4 associated to medium/high CD68, COX2, VCAM1, Hes1, miR126-5p, miR146a-5p, miR155-5p, miR424-5p and low Jag1, SM22, Bcl2, Hey2, HeyL, miR125a-5p (2/9 patients) and a "stable plaque" profile characterized by high Jag1 associated to medium/high Hey2, HeyL, SM22, Bcl2, miR125a and low Dll4, CD68, COX2, VCAM1, miR126-5p, miR146a-5p, miR155-5p, miR424-5p (3/9 patients). The remaining patients (4/9) showed a plaque profile with intermediate characteristics. CONCLUSIONS: This study reveals the existence of a gene signature associated to Notch activation by specific ligands that could be predictive of PAD progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/patologia , Placa Aterosclerótica/patologia , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Animais , Proteínas de Ligação ao Cálcio , Colesterol/metabolismo , Feminino , Seguimentos , Humanos , Inflamação/patologia , Ligantes , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Projetos Piloto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais/genética
6.
J Cell Physiol ; 231(12): 2652-63, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26946465

RESUMO

Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Osteogênese , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteossarcoma/genética , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
7.
J Cell Physiol ; 231(12): 2700-10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26987674

RESUMO

It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = -0.526 and r = -0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. J. Cell. Physiol. 231: 2700-2710, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Insuficiência Cardíaca/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Soro/metabolismo , Transdução de Sinais , Idoso , Colágeno/farmacologia , Citocinas/sangue , Feminino , Géis/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1843(4): 806-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440277

RESUMO

In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.


Assuntos
Aquaporinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Leucemia/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aquaporinas/biossíntese , Aquaporinas/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Leucemia/patologia , NADPH Oxidases/genética , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese
9.
Inflammation ; 47(1): 13-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953417

RESUMO

Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.


Assuntos
Disbiose , Psoríase , Adulto , Humanos , Disbiose/patologia , Psoríase/tratamento farmacológico , Psoríase/patologia , Comorbidade , Pele/patologia , Inflamação
10.
Diseases ; 12(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38785758

RESUMO

Bile acids (BAs) and bilirubin, primarily known for their role in lipid metabolism and as heme catabolite, respectively, have been found to have diverse effects on various physiological processes, including oxidative stress and inflammation. Indeed, accumulating evidence showed that the interplay between BAs and bilirubin in these processes involves intricate regulatory mechanisms mediated by specific receptors and signaling pathways under certain conditions and in specific contexts. Oxidative stress plays a significant role in the development and progression of cardiovascular diseases (CVDs) due to its role in inflammation, endothelial dysfunction, hypertension, and other risk factors. In the cardiovascular (CV) system, recent studies have suggested that BAs and bilirubin have some opposite effects related to oxidative and inflammatory mechanisms, but this area of research is still under investigation. This review aims to introduce BAs and bilirubin from a biochemical and physiological point of view, emphasizing their potential protective or detrimental effects on CVDs. Moreover, clinical studies that have assessed the association between BAs/bilirubin and CVD were examined in depth to better interpret the possible link between them.

11.
Biomed J ; 46(3): 100596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149260

RESUMO

BACKGROUND: The Peto's paradox consists in the observation that individuals from long-lived and large animal species do not experience a higher cancer incidence, despite being exposed for longer time to the possibility of accumulating mutations and having more target cells exposed to the phenomenon. The existence of this paradox has been recently confirmed (Vincze et al., 2022). Concurrently, robust evidence has been published that longevity involves a convergent evolution of cellular mechanisms that prevent the accumulation of mutations (Cagan et al., 2022). It remains unclear which cellular mechanisms are critical to allow the evolution of a large body mass while keeping cancer at bay. METHODS: Adding to existing data linking cellular replicative potential and species body mass (Lorenzini et al., 2005), we have grown a total of 84 skin fibroblast cell strains from 40 donors of 17 mammalian species and analyzed their Hayflick's limit, i.e., their senescent plateau, and eventual spontaneous immortalization escape. The correlation of immortalization and replicative capacity of the species with their longevity, body mass and metabolism has been assessed through phylogenetic multiple linear regression (MLR). RESULTS: The immortalization probability is negatively related to species body mass. The new evaluation and additional data about replicative potential strengthen our previous observation, confirming that stable and extended proliferation is strongly correlated with the evolution of a large body mass rather than lifespan. CONCLUSION: The relation between immortalization and body mass suggests a need to evolve stringent mechanisms that control genetic stability during the evolution of a large body mass.


Assuntos
Longevidade , Neoplasias , Animais , Filogenia , Técnicas de Cultura de Células , Probabilidade , Mamíferos
12.
Biomed J ; 47(2): 100654, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37604250

RESUMO

Comparative oncology is an understudied field of science. We are far from understanding the key mechanisms behind Peto's paradox, i.e., understanding how long-lived and large animals are not subject to a higher cancer burden despite the longer exposure time to mutations and the larger number of cells exposed. In this work, we investigated the scientific evidence on such mechanisms through a systematic mini-review of the literature about the relation of longevity and/or large body mass with physiological, genetic, or environmental traits among mammalian species. More than forty thousand articles were retrieved from three repositories, and 383 of them were screened using an active-learning-based tool. Of those, 36 articles on longevity and 37 on body mass were selected for the review. Such articles were examined focusing on: number and type of species considered, statistical methods used, traits investigated, and observed relationship with longevity and/or body mass. Where applicable, the traits investigated were matched with one or more hallmarks of cancer. We obtained a list of potential candidate traits to explain Peto's paradox related to replicative immortality, cell senescence, genome instability and mutations, proliferative signaling, growth suppression evasion, and cell resistance to death. Our investigation suggests that different strategies have been followed to prevent cancer in large and long-lived species. The large number of papers retrieved emphasizes that more studies can be launched in the future, using more efficient analytical approaches to comprehensively evaluate the convergent biological mechanisms essential for acquiring longevity and large body mass without increasing cancer risk.

13.
Antioxidants (Basel) ; 12(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36978827

RESUMO

Atherosclerosis and atherosclerotic-related cardiovascular diseases (ASCVD) are characterized by high serum levels of low-density lipoprotein cholesterol (LDL-C) that can promote the generation of reactive oxygen species (ROS). To answer the need for better LDL-C control in individuals at high and very high risk for CVD, a new injectable innovative family of lipid-lowering (LL) monoclonal antibodies against the protein convertase subtilisin/kexin type 9 (PCSK9) has been approved. However, the effect of these drugs on vascular function, such as ROS generation and arterial stiffness, has not already been extensively described. In this report, we present data from 18 males with high to very high CV risk undergoing LL treatment (LLT) with either statin and ezetimibe or ezetimibe monotherapy, who experienced, after a 2-month treatment with Evolocumab, a significant improvement in blood pressure (BP)-adjusted carotid-femoral pulse wave velocity (cfPWV) (p-value = 0.0005 in the whole cohort, p-value = 0.0046 in the sub-cohort undergoing background LLT with statin and ezetimibe, p-value = 0.015 in the sub-cohort undergoing background LLT with ezetimibe monotherapy), which was significantly associated with a decrease in freshly isolated leukocytes (PBMCS)-derived H2O2 production (p-value = 0.004, p-value = 0.02 and p-value = 0.05, respectively, in the whole cohort, in the statin + ezetimibe sub-cohort, and the ezetimibe sub-cohort). Our observations support the role of systemic oxidative stress in atherosclerosis and give a further rationale for using Evolocumab also for its effect in vascular disorders linked to oxidative processes.

14.
Am J Physiol Heart Circ Physiol ; 302(3): H724-32, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101521

RESUMO

p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.


Assuntos
Células Endoteliais/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cavéolas/enzimologia , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microdomínios da Membrana/enzimologia , Fosforilação/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Nutrients ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889921

RESUMO

Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.


Assuntos
Ácidos e Sais Biliares , Neoplasias Colorretais , Ácidos e Sais Biliares/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Dieta Hiperlipídica , Humanos , Fígado/metabolismo , Transdução de Sinais
16.
Antioxidants (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139860

RESUMO

Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.

17.
Nutrients ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458122

RESUMO

Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin-Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor-alpha (TNFα) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 µg/mL). Moreover, treatment with Pushgay berries for 72 h (10 µg/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties.


Assuntos
Vaccinium , Antioxidantes/farmacologia , Fermentação , Frutas , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/farmacologia , Macrófagos , Estresse Oxidativo , Espectrometria de Massas em Tandem
18.
Biomolecules ; 11(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439847

RESUMO

Food waste is a global problem due to its environmental and economic impact, so there is great demand for the exploitation of new functional applications. The winemaking process leads to an incomplete extraction of high-value compounds, leaving the pomace still rich in polyphenols. This study was aimed at optimising and validating sustainable routes toward the extraction and further valorisation of these polyphenols, particularly for cosmeceutical applications. New formulations based on red grape pomace polyphenols and natural deep eutectic solvents (NaDESs) were here investigated, namely betaine combined with citric acid (BET-CA), urea (BET-U) and ethylene glycol (BET-EG), in which DESs were used both as extracting and carrying agents for polyphenols. The flavonoid profile determined by HPLC-MS/MS analysis showed similar malvidin content (51-56 µg mL-1) in the DES combinations, while BET-CA gave the best permeation performance in Franz cells, so it was further investigated in 3D human keratinocytes (HaCat spheroids) injured with the pro-oxidant agent menadione. BET-CA treatment showed good intracellular antioxidant activity (IC50 0.15 ± 0.02 µg mL-1 in malvidin content) and significantly decreased (p < 0.001) the release of the pro-inflammatory cytokine IL-8, improving cell viability. Thus, BET-CA formulation is worthy of investigation for potential use as a cosmetic ingredient to reduce oxidative stress and inflammation, which are causes of skin aging.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Eliminação de Resíduos/métodos , Vitis/metabolismo , Cosméticos/química , Células HaCaT , Humanos , Estresse Oxidativo/efeitos dos fármacos
19.
Bioorg Med Chem ; 18(9): 3004-11, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20395150

RESUMO

This paper reports the synthesis of new derivatives (formed by two indole systems separated by a central moiety) analogous of potent antitumor agents previously described. The activity of the bis-indoles bearing a pyridine core confirms the good result described in the previous paper and compound 4c was chosen for the first in vivo experiment (Hollow Fiber Assay). COMPARE analysis and structure-activity relationships were also considered. Contrary to data reported by other Authors, no correlations were found between antitumor activity and NQO1 induction.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Indóis , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Estrutura Molecular , Relação Estrutura-Atividade
20.
Nutrients ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036498

RESUMO

Lactic acid bacteria (LAB) "fermentates" confer a beneficial effect on intestinal function. However, the ability of new fermentations to improve LAB broth activity in preventing pathogen-induced intestinal inflammation and barrier dysfunction has not yet been studied. The objective of this study was to determine if broths of LAB fermented with Eruca sativa or Barbarea verna seed extracts prevent gut barrier dysfunction and interleukin-8 (CXCL8) release in vitro in human intestinal Caco-2 cells infected with enterohemorrhagic Escherichia coli (EHEC) O157:H7. LAB broths were assayed for their effects on EHEC growth and on Caco-2 viability; thereafter, their biological properties were analysed in a co-culture system consisting of EHEC and Caco-2 cells. Caco-2 cells infected with EHEC significantly increased CXCL8 release, and decreased Trans-Epithelial Electrical Resistance (TEER), a barrier-integrity marker. Notably, when Caco-2 cells were treated with LAB broth enriched with E. sativa seed extract and thereafter infected, both CXCL8 expression and epithelial dysfunction reduced compared to in untreated cells. These results underline the beneficial effect of broths from LAB fermented with E. sativa seed extracts in gut barrier and inflammation after EHEC infection and reveal that these LAB broths can be used as functional bioactive compounds to regulate intestinal function.


Assuntos
Brassicaceae/química , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/crescimento & desenvolvimento , Fermentação , Gastroenterite/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus acidophilus , Extratos Vegetais/farmacologia , Probióticos/farmacologia , Sementes/química , Antibacterianos , Barbarea/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Farmacorresistência Bacteriana , Impedância Elétrica , Infecções por Escherichia coli , Escherichia coli O157/patogenicidade , Gastroenterite/microbiologia , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/fisiologia , Fitoterapia , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA