Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 37(13): 3599-3609, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28270571

RESUMO

Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1ß levels and enhanced the IL-1ß secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1ß mRNA expression and inflammasome activation (ASC oligomers and mature IL-1ß). Intriguingly, LPS potentiated upregulation of IL-1ß mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1ß secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV-1 Transactivator of Transcription (Tat) protein can activate microglia is thus of paramount importance. Herein, we demonstrate a novel role of Tat in priming and activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in microglial cells and in HIV-Tg rats administered lipopolysaccharide. Targeting NLRP3 inflammasome pathway mediators could thus be developed as therapeutic interventions to alleviate or prevent neuroinflammation and subsequent cognitive impairment in HIV-positive patients.


Assuntos
Encéfalo/imunologia , Encefalite Viral/imunologia , Inflamassomos/imunologia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Animais , Citocinas/imunologia , Feminino , Mediadores da Inflamação/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Ratos , Ratos Transgênicos
2.
J Neuroinflammation ; 13: 33, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26860188

RESUMO

BACKGROUND: Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. METHODS: BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. RESULTS: Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. CONCLUSIONS: xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the ROS-ER stress-ATF4-TLR2 axis. Understanding the mechanism(s) involved in cocaine-mediated up-regulation of ROS-ER stress/TLR2 expression and microglial activation could have implications for the development of potential therapeutic targets aimed at resolving neuroinflammation in cocaine abusers.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
J Neurovirol ; 22(5): 564-574, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26843384

RESUMO

With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.


Assuntos
Complexo AIDS Demência/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , HIV-1/química , Mitocôndrias/metabolismo , Neurônios/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/patologia , Proteoma/genética , Proteoma/metabolismo , Ratos , Ratos Transgênicos , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
4.
J Pers Med ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683104

RESUMO

Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1ß can promote the progression of cocaine addiction. Additionally, the activation status of microglia and "two-hit hypothesis" have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1-/-) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1-/- mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1-/- mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.

5.
J Neuroimmune Pharmacol ; 14(2): 200-214, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30242614

RESUMO

Human Immunodeficiency Virus (HIV) pathogenesis has been closely linked with microbial translocation, which is believed to drive inflammation and HIV replication. Opioid drugs have been shown to worsen this symptom, leading to a faster progression of HIV infection to Acquired Immunodeficiency Syndrome (AIDS). The interaction of HIV and opioid drugs has not been studied at early stages of HIV, particularly in the gut microbiome where changes may precede translocation events. This study modeled early HIV infection by examining Simian Immunodeficiency Virus (SIV)-infected primates at 21 days or less both independently and in the context of opioid use. Fecal samples were analyzed both for 16S analysis of microbial populations as well as metabolite profiles via mass spectrometry. Our results indicate that changes are minor in SIV treated animals in the time points examined, however animals treated with morphine and SIV had significant changes in their microbial communities and metabolic profiles. This occurred in a time-independent fashion with morphine regardless of how long the animal had morphine in its system. Globally, the observed changes support that microbial dysbiosis is occurring in these animals at an early time, which likely contributes to the translocation events observed later in SIV/HIV pathogenesis. Additionally, metabolic changes were predictive of specific treatment groups, which could be further developed as a diagnostic tool or future intervention target to overcome and slow the progression of HIV infection to AIDS.


Assuntos
Analgésicos Opioides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Morfina/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Animais , Linfócitos T CD4-Positivos , Fezes/química , Fezes/microbiologia , Macaca mulatta , Masculino , RNA Ribossômico 16S/análise , Vírus da Imunodeficiência Símia , Carga Viral
6.
Mol Neurobiol ; 55(4): 3196-3210, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28478506

RESUMO

Cocaine is known to activate microglia both in vitro and in vivo. High expression of microglial Toll-like receptors (TLRs) and their downstream signal transducers play critical roles in determining microglial activation status. Emerging reports have also demonstrated that cocaine can enhance the strength of TLR signaling. Detailed molecular mechanisms underlying this phenomenon, however, remain elusive. In this study, we investigated the role(s) of miR-124 in regulating microglial TLR4 signaling in the context of cocaine. Herein, we found a dose- and time-dependent upregulation of KLF4 in cocaine-exposed BV-2 cells and rat primary microglial cells (rPMs). KLF4 also identified as a novel 3'-UTR target directly regulated by miR-124. In parallel, miR-124 regulated multiple TLR4 signaling molecules including TLR4, MyD88, TRAF6, and IRAK1. Repeated doses of cocaine (20 mg/kg; i.p.) administration in mice for 7 days further validated the in vitro key findings. Also, miR-124 overexpression significantly blocked the cocaine-mediated upregulation of pro-inflammatory cytokines. In contrast, miR-124 overexpression notably increased the expression of anti-inflammatory mediators in cocaine-exposed microglial cells. Intriguingly, stereotactic administration of lentivirus-miR-124 in the striatum significantly inhibited cocaine-mediated microglial activation and locomotor hyperactivity in vivo. In summary, these findings implicate the role of miR-124 in regulating TLR4 signaling, thereby indicating a new pathway responsible for cocaine-mediated microglial activation.


Assuntos
Cocaína/farmacologia , Regulação para Baixo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Lentivirus/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Microglia/efeitos dos fármacos , Modelos Biológicos , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos Sprague-Dawley , Fator 6 Associado a Receptor de TNF/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Theranostics ; 8(1): 256-276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290806

RESUMO

RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanomedicina Teranóstica/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Európio/química , Európio/farmacocinética , Ácido Fólico/química , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Macaca mulatta , Macrófagos/metabolismo , Microscopia Confocal , Nanopartículas/química , Oxazinas , Piperazinas , Piridonas
8.
Epigenetics ; 11(11): 819-830, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27786595

RESUMO

Neuroinflammation plays a critical role in the development of reward-related behavior in cocaine self-administration rodents. Cocaine, one of most commonly abused drugs, has been shown to activate microglia both in vitro and in vivo. Detailed molecular mechanisms underlying cocaine-mediated microglial activation remain poorly understood. microRNAs (miRs) belonging to a class of small noncoding RNA superfamily have been shown to modulate the activation status of microglia. miR-124, one of the microglia-enriched miRs, functions as an anti-inflammatory regulator that maintains microglia in a quiescent state. To date, the possible effects of cocaine on microglial miR-124 levels and the associated underlying mechanisms have not been explored. In the current study, we demonstrated that cocaine exposure decreased miR-124 levels in both BV-2 cells and rat primary microglia. These findings were further validated in vivo, wherein we demonstrated decreased abundance of miR-124 in purified microglia isolated from cocaine-administered mice brains compared with cells from saline administered animals. Molecular mechanisms underlying these effects involved cocaine-mediated increased mRNA and protein expression of DNMTs in microglia. Consistently, cocaine substantially increased promoter DNA methylation levels of miR-124 precursors (pri-miR-124-1 and -2), but not that of pri-miR-124-3, both in vitro and in vivo. In summary, our findings demonstrated that cocaine exposure increased DNA methylation of miR-124 promoter resulting into its downregulation, which, in turn, led to microglial activation. Our results thus implicate that epigenetic modulation of miR-124 could be considered as a potential therapeutic approach to ameliorate microglial activation and, possibly, the development of cocaine addiction.


Assuntos
Cocaína/toxicidade , Metilação de DNA/genética , MicroRNAs/genética , Animais , Células Cultivadas , Cocaína/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , MicroRNAs/biossíntese , Microglia/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos
9.
Autophagy ; 11(7): 995-1009, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26043790

RESUMO

Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.


Assuntos
Autofagia/efeitos dos fármacos , Cocaína/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Androstadienos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Modelos Biológicos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA