Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Phys Chem A ; 116(7): 1701-9, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22268622

RESUMO

Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge-chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at ~275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.


Assuntos
Peptídeos/química , Prótons , Tirosina/química , Absorção , Meia-Vida , Ligação de Hidrogênio , Dobramento de Proteína , Vácuo
2.
J Neurosci ; 23(3): 961-9, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12574425

RESUMO

Alterations in the corticostriatal pathway may precede symptomatology and striatal cell death in Huntington's disease (HD) patients. Here we examined spontaneous EPSCs in striatal medium-sized spiny neurons in slices from a mouse model of HD (R6/2). Spontaneous EPSC frequency was similar in young (3-4 weeks) transgenics and controls but decreased significantly in transgenics when overt behavioral symptoms began (5-7 weeks) and was most pronounced in severely impaired transgenics (11-15 weeks). These differences were maintained after bicuculline or tetrodotoxin, indicating they were specific to glutamatergic input and likely presynaptic in origin. Decreases in presynaptic and postsynaptic protein markers, synaptophysin and postsynaptic density-95, occurred in 11-15 week R6/2 mice, supporting the electrophysiological results. Furthermore, isolated, large-amplitude synaptic events (>100 pA) occurred more frequently in transgenic animals, particularly at 5-7 weeks, suggesting additional dysregulation of cortical inputs. Large events were blocked by tetrodotoxin, indicating a possible cortical origin. Addition of bicuculline and 4-aminopyridine facilitated the occurrence of large events. Riluzole, a compound that decreases glutamate release, reduced these events. Together, these observations indicate that both progressive and transient alterations occur along the corticostriatal pathway in experimental HD. These alterations are likely to contribute to the selective vulnerability of striatal medium-sized spiny neurons.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Doença de Huntington/fisiopatologia , Vias Neurais/fisiopatologia , Animais , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Camundongos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Riluzol/farmacologia , Tetrodotoxina/farmacologia
3.
J Am Soc Mass Spectrom ; 24(9): 1366-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817831

RESUMO

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.


Assuntos
Aminoácidos/química , Espectrometria de Massas/métodos , Peptídeos/química , Íons/química , Lasers , Modelos Moleculares
4.
J Neurophysiol ; 93(5): 2565-74, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15625098

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder that mainly affects the projection neurons of the striatum and cerebral cortex. Genetic mouse models of HD have shown that neurons susceptible to the mutation exhibit morphological and electrophysiological dysfunctions before and during development of the behavioral phenotype. We used HD transgenic mouse models to examine inwardly and outwardly rectifying K+ conductances, as well as expression of some related K+ channel subunits. Experiments were conducted in slices and dissociated cells from two mouse models, the R6/2 and TgCAG100, at the beginning and after full development of overt behavioral phenotypes. Striatal medium-sized spiny neurons (MSNs) from symptomatic transgenic mice had increased input resistances, depolarized resting membrane potentials, and reductions in both inwardly and outwardly rectifying K+ currents. These changes were more dramatic in the R6/2 model than in the TgCAG100. Parallel immunofluorescence studies detected decreases in the expression of K+ channel subunit proteins, Kir2.1, Kir2.3, and Kv2.1 in MSNs, which contribute to the formation of the channel ionophores for these currents. Attenuation in K+ conductances and channel subunit expression contribute to altered electrophysiological properties of MSNs and may partially account for selective cellular vulnerability in the striatum.


Assuntos
Doença de Huntington/fisiopatologia , Neostriado/citologia , Neostriado/fisiopatologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Fatores Etários , Análise de Variância , Animais , Césio/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Regulação da Expressão Gênica/fisiologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Imuno-Histoquímica/métodos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Transgênicos , Neostriado/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/efeitos da radiação , Tetraetilamônio/farmacologia
5.
J Neurophysiol ; 88(6): 3010-20, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466426

RESUMO

Dopamine (DA), via activation of D1 receptors, enhances N-methyl-D-aspartate (NMDA)-evoked responses in striatal neurons. The present investigation examined further the properties of this enhancement and the potential mechanisms by which this enhancement might be effected. Dissociated medium-sized striatal neurons were obtained from intact rats and mice or mutant mice lacking the DA and cyclic adenosine 3',5' monophosphate (cAMP)-regulated phosphoprotein of M(R) 32,000 (DARPP-32). NMDA (10-1,000 microM) induced inward currents in all neurons. In acutely dissociated neurons from intact rats or mice, activation of D1 receptors with the selective agonist, SKF 81297, produced a dose-dependent enhancement of NMDA currents. This enhancement was reduced by the selective D1 receptor antagonist SKF 83566. Quinpirole, a D2 receptor agonist alone, produced small reductions of NMDA currents. However, it consistently and significantly reduced the enhancement of NMDA currents by D1 agonists. In dissociated striatal neurons, in conditions that minimized the contributions of voltage-gated Ca(2+) conductances, the D1-induced potentiation was not altered by blockade of L-type voltage-gated Ca(2+) conductances in contrast to results in slices. The DARPP-32 signaling pathway has an important role in D1 modulation of NMDA currents. In mice lacking DARPP-32, the enhancement was significantly reduced. Furthermore, okadaic acid, a protein phosphatase 1 (PP-1) inhibitor, increased D1-induced potentiation, suggesting that constitutively active PP-1 attenuates D1-induced potentiation. Finally, activation of D1 receptors produced differential effects on NMDA and gamma aminobutyric acid (GABA)-induced currents in the same cells, enhancing NMDA currents and inhibiting GABA currents. Thus simultaneous activation of D1, NMDA, and GABA receptors could predispose medium-sized spiny neurons toward excitation. Taken together, the present findings indicate that the unique potentiation of NMDA receptor function by activation of the D1 receptor signaling cascade can be controlled by multiple mechanisms and has major influences on neuronal function.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/farmacologia , Proteínas do Tecido Nervoso , Fosfoproteínas/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Tamanho Celular , Fosfoproteína 32 Regulada por cAMP e Dopamina , Condutividade Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Camundongos Knockout/genética , N-Metilaspartato/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/fisiologia
6.
J Neurosci Res ; 72(4): 472-86, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12704809

RESUMO

The mechanisms responsible for seizure generation in cortical dysplasia (CD) are unknown, but morphologically abnormal cells could contribute. We examined the passive and active membrane properties of cells from pediatric CD in vitro. Normal- and abnormal-appearing cells were identified morphologically by using infrared videomicroscopy and biocytin in slices from children with mild to severe CD. Electrophysiological properties were assessed with patch clamp recordings. Four groups of abnormal-appearing cells were observed. The first consisted of large, pyramidal cells probably corresponding to cytomegalic neurons. Under conditions that reduced the contribution of K(+) conductances, these cells generated large Ca(2+) currents and influx when depolarized. When these cells were acutely dissociated, peak Ca(2+) currents and densities were greater in cytomegalic compared with normal-appearing pyramidal neurons. The second group included large, nonpyramidal cells with atypical somatodendritic morphology that could correspond to "balloon" cells. These cells did not display active voltage- or ligand-gated currents and did not appear to receive synaptic inputs. The third group included misoriented and dysmorphic pyramidal neurons, and the fourth group consisted of immature-looking pyramidal neurons. Electrophysiologically, neurons in these latter two groups did not display significant abnormalities when compared with normal-appearing pyramidal neurons. We conclude that there are cells with abnormal intrinsic membrane properties in pediatric CD. Among the four groups of cells, the most abnormal electrophysiological properties were displayed by cytomegalic neurons and large cells with atypical morphology. Cytomegalic neurons could play an important role in the generation of epileptic activity.


Assuntos
Córtex Cerebral , Neurônios/patologia , Convulsões/fisiopatologia , Potenciais de Ação , Adolescente , Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Eletrofisiologia , Feminino , Humanos , Imuno-Histoquímica , Lactente , Masculino , Microscopia de Vídeo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Convulsões/patologia , Convulsões/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA