Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 76(10): 816-825, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069693

RESUMO

The quest for circular designs and ways to reuse polymer materials demands further advances in the development of reversible chemistries. Stimuli-responsive systems incorporated into polymer materials that enable the formation and cleavage of covalent bonds, hold great potential to reversibly decompose materials into their original building blocks. [2π+2π] photocycloadditions, for which the addition and reversion mechanism can be triggered by disparate wavelengths, stand as an attractive platform for triggering such controlled and reversible photoligation towards achieving renewable polymer materials. This perspective highlights the potential of this type of photochemistry to incorporate solid polymer materials and generate reversible polymerizations. The design of effective photoresponsive materials with specific functions requires the consideration of a number of parameters. Following a bottom-up approach - from molecular chemistry to macromolecular functionality - this perspective provides a recipe of the key aspects to consider in the design of such advanced renewable materials. Furthermore, examples of the state of the art in the field are highlighted and an overview of the fundamental challenges that remain is provided. Finally, an outlook on the next frontiers to cross is proposed.

2.
Macromol Rapid Commun ; 42(1): e2000549, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270318

RESUMO

The development of mechanochromic or self-reporting polymers that can indicate damage or fatigue of materials with an optical signal has become of paramount interest to ensure the reliability of the materials and prevent catastrophic failure. This technology can potentially find usefulness for various applications, including in situ monitoring of mechanical events and structural health monitoring systems. An emerging and versatile approach to achieve mechanochromic properties relies on the encapsulation of dye solutions that can be released and activated (chemically or physically) when the walls of the capsules are mechanically damaged. While the mechanochromic effect can be achieved with different types of dyes and operating principles, this framework can also be designed with encapsulating-containers of different shapes and shell materials, such as microcapsules, hollow glass fibers, vascular networks, and micelles, making this concept applicable to a broad range of polymer matrices. An overview of the different encapsulation approaches that have been employed to prepare mechanochromic polymers is given, with a focus on the containers used for this purpose. A brief description of the containers' preparation is provided, and their associated chromic operating principles and progress in their designs are reviewed.


Assuntos
Corantes , Polímeros , Cápsulas , Reprodutibilidade dos Testes
3.
Macromol Rapid Commun ; 41(7): e1900654, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32134544

RESUMO

The development of polymers with built-in sensors that provide readily perceptible optical warning signs of mechanical events has received considerable interest. A simple and versatile concept to bestow polymers with mechanochromic behavior is the incorporation of dye-filled microcapsules. Such capsules release their cargo when their shell is damaged, and the dye is subsequently activated through a chemical or physical change that causes a chromogenic response. Here, we report the preparation of fluorescent poly(urea-formaldehyde) microcapsules containing solutions of a solvatochromic cyanostilbene dye and their integration in different polymers. When objects made from such composites are damaged, the dye solution is released from the containers, diffuses into the matrix, and the solvent evaporates. As a result, the polarity around the dye molecules changes, and this leads to a change of the fluorescence color. Alternatively, the dye is blended into the polymer matrix, microcapsules are loaded with a solvent, and the release of the latter triggers the color change. Both mechanisms afford ratiometric signals because the capsules that remain intact or dye molecules that are not exposed to the solvent can be used as a built-in reference; therefore, a quantitative assessment of the damage inflicted on the material is a priori possible.


Assuntos
Corantes Fluorescentes/química , Formaldeído/química , Polímeros/química , Ureia/química , Cápsulas/síntese química , Cápsulas/química , Corantes Fluorescentes/síntese química , Formaldeído/síntese química , Fenômenos Mecânicos , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Ureia/síntese química
4.
Macromol Rapid Commun ; 40(1): e1800705, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417478

RESUMO

A well-known approach toward mechanochromic polymers relies on the incorporation of excimer-forming fluorophores into a matrix polymer and the disruption of aggregated chromophores when such materials undergo macroscopic mechanical deformation. However, the required aggregates and stress-transfer processes have so far only been realized with select dye/polymer combinations. As demonstrated here, the utility of this approach can be extended by tethering an excimer-forming cyano-substituted oligo(p-phenylene vinylene) fluorophore to the two ends of a telechelic poly(ethylene-co-butylene) and blending small amounts (0.1-2 wt%) of the resulting aggregachromic macromolecule into polymer matrices such as poly(ε-caprolactone), poly(isoprene), or poly(styrene-b-butadiene-b-styrene). All blends display mechanofluorochromic responses, and the ratio between the monomer and excimer emission intensities can be used to correlate the luminescence signal to the extent of deformation and to follow subsequent relaxation processes. The developed approach significantly expands the scope of blend-based mechanoresponsive luminescent materials.


Assuntos
Substâncias Luminescentes/química , Polímeros/química , Substâncias Macromoleculares/química , Fenômenos Mecânicos , Estrutura Molecular
5.
Chimia (Aarau) ; 73(1): 7-11, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813988

RESUMO

While coupling mechanical and chemical processes is widespread in living organisms, the idea to harness the mechanically induced dissociation of weak covalent and non-covalent bonds to create artificial materials that respond to mechanical stimulation has only recently gained attention. Here we summarize our activities that mainly revolve around the exploitation of non-covalent interactions in (supramolecular) polymeric materials with the goal to translate mechanical stresses into useful, pre-defined events. Focusing on mechano- chromic polymers that alter their optical absorption or fluorescence properties, several new operating principles, mechanosensitive entities, and materials systems were developed. Such materials are expected to be useful for technical applications that range from the detection of very small forces in biological systems to the monitoring of degradation processes and damage in coatings and structural objects.

6.
Small ; 14(46): e1802489, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30265445

RESUMO

Self-reporting polymers, which can indicate damage or exposure to excessive stress with a clearly perceptible optical signal, are potentially useful for several technological applications, including stress-sensitive sensors that enable in situ monitoring of mechanical events and structural health monitoring systems. A versatile and simple concept to realize this function is the exploitation of microcapsules that are filled with solutions of dyes that are released and chemically or physically activated when the protective shell is damaged. Such microcapsules can readily be incorporated into polymers and the composites thus made can be processed into films, coatings, or other objects. Mechanochromic effects can be realized with different types of dyes and activation schemes. In this concept article, a selection of recent key studies is presented to provide an overview of the state of the field. Different architectures and operating principles and their advantages and drawbacks are reviewed. The parameters that influence the design of microcapsule-based mechanochromic systems are considered and unexplored chromophore systems that might be useful to design future self-reporting polymers are discussed. Finally, specific aspects of capsule design, fabrication, and integration into polymers are presented. Throughout the article, challenges and opportunities of the concept are highlighted and possible future directions are discussed.

7.
Chemistry ; 24(29): 7369-7373, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29603443

RESUMO

There is significant interest in the rapid and efficient detection of amines, which are widely used in different industries and also serve as markers in many biological processes. This work reports that the coupling of a thiosemicarbazide binding motif and a naphthalimide-based chromophore affords highly sensitive sensor molecules, which can indicate the presence of amines with a pronounced and readily visible color change. It was demonstrated that the binding mechanism involves a proton transfer from the thiosemicarbazide to the analyte. This process renders the mechanism highly sensitive and broadly exploitable. The potential usefulness of the sensor is demonstrated by fabricating an indicator paper, which allows for the detection of volatile amines at concentrations as low as ca. 10 ppm.

8.
Mater Horiz ; 10(9): 3467-3475, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37350289

RESUMO

The mechanical failure of polymers remains challenging to understand and predict, as it often involves highly localised phenomena that cannot be probed with bulk characterisation techniques. Here, we present a generalisable protocol based on optical microscopy, tensile testing, and image processing that permits the spatially resolved interrogation of mechanical deformation at the molecular level around defects in mechanophore-containing polymers. The approach can be applied to a broad range of polymeric materials, mechanophores, and deformation scenarios.

9.
ACS Biomater Sci Eng ; 7(4): 1450-1461, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33689287

RESUMO

Cellulose nanocrystals (CNCs) are an emergent, sustainable nanomaterial that are biosourced, abundant, and biodegradable. On account of their high aspect ratio, low density, and mechanical rigidity, they have been employed in numerous areas of biomedical research including as reinforcing materials for bone or tissue scaffolds or as carriers in drug delivery systems. Given the promise of these materials for such use, characterizing and understanding their interactions with biological systems is an important step to prevent toxicity or inflammation. Reported herein are studies aimed at exploring the in vitro and in vivo effects that the source, length, and charge of the CNCs have on cytotoxicity and immune response. CNCs from four different biosources (cotton, wood, Miscanthus x Giganteus, and sea tunicate) were prepared and functionalized with positive or negative charges to obtain a small library of CNCs with a range of dimensions and surface charge. A method to remove endotoxic or other impurities on the CNC surface leftover from the isolation process was developed, and the biocompatibility of the CNCs was subsequently assayed in vitro and in vivo. After subcutaneous injection, it was found that unfunctionalized (uncharged) CNCs form aggregates at the site of injection, inducing splenomegaly and neutrophil infiltration, while charged CNCs having surface carboxylates, sulfate half-esters, or primary amines were biologically inert. No effect of the particle source or length was observed in the in vitro and in vivo studies conducted. The lack of an in vitro or in vivo immune response toward charged CNCs in these experiments supports their use in future biological studies.


Assuntos
Nanopartículas , Nanoestruturas , Celulose , Histocompatibilidade , Nanopartículas/toxicidade , Madeira
10.
Adv Mater ; 31(14): e1807212, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30680825

RESUMO

A new concept for the design of self-toughening thermoplastic polymers is presented. The approach involves the incorporation of plasticizer-filled microcapsules (MCs) in an intrinsically rigid and brittle matrix polymer. The intriguing adaptability that this simple tactic enables is demonstrated with composites composed of a poly(lactic acid) (PLA) matrix and 5-20% w/w poly(urea-formaldehyde) (PUF) MCs that contained hexyl acetate as plasticizer. At low strain (<1.5%), the glassy PLA/MC composites remain rigid, although the intact MCs reduce the Young's modulus and tensile strength by up to 50%. While the neat PLA shows brittle failure at a strain of around 2.5%, the composites yield in this regime, because the MCs rupture and release their plasticizing cargo. This effect leads up to 25-fold increase of the elongation at break and 20-fold increase of the toughness vis-à-vis the neat PLA, while the impact on modulus and ultimate stress is much smaller. Ballistic impact tests show that the self-toughening mechanism also works at much higher strain rates than applied in tensile tests and the operating mechanism is corroborated through systematic thermomechanical studies that involved dynamic mechanical testing and thermal analysis.

11.
Adv Mater ; 30(19): e1704603, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29345378

RESUMO

While mechanochemical transduction principles are omnipresent in nature, mimicking these in artificial materials is challenging. The ability to reliably detect the exposure of man-made objects to mechanical forces is, however, of great interest for many applications, including structural health monitoring and tamper-proof packaging. A useful concept to achieve mechanochromic responses in polymers is the integration of microcapsules, which rupture upon deformation and release a payload causing a visually detectable response. Herein, it is reported that this approach can be used to create mechanochromic fluorescent materials that show a direct and ratiometric response to mechanical deformation. This can be achieved by filling poly(urea-formaldehyde) microcapsules with a solution of a photoluminescent aggregachromic cyano-substituted oligo(p-phenylene vinylene) and embedding these particles in poly(dimethylsiloxane). The application of mechanical force by way of impact, incision, or tensile deformation opens the microcapsules and releases the fluorophore in the damaged area. Due to excimer formation, the subsequent aggregation of the dye furnishes a detectable fluorescence color change. With the emission from unopened microcapsules as built-in reference, the approach affords materials that are self-calibrating. This new concept appears to be readily applicable to a range of polymer matrices and allows for the straightforward assessment of their structural integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA