Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1864(9): 1195-1205, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179589

RESUMO

In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Glioxilatos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Transaminases/química , Adaptação Biológica , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Dimerização , Metabolismo Energético , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glioxilatos/química , Humanos , Mutação , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Homologia Estrutural de Proteína , Temperatura , Transaminases/genética , Transaminases/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(7): 2776-81, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550307

RESUMO

The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (Ts) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above Ts (negative thermotaxis) and performs isothermal tracking near Ts. Under some conditions, the worm migrates up temperature gradients below Ts (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward Ts to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below Ts. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.


Assuntos
Caenorhabditis elegans/fisiologia , Memória de Longo Prazo/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Neurônios/fisiologia , Sensação Térmica/fisiologia , Animais , Temperatura
3.
Neurobiol Dis ; 95: 168-78, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27461051

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motoneurons, which is preceded by loss of neuromuscular connections in a "dying back" process. Neuregulin-1 (Nrg1) is a neurotrophic factor essential for the development and maintenance of neuromuscular junctions, and Nrg1 receptor ErbB4 loss-of-function mutations have been reported as causative for ALS. Our main goal was to investigate the role of Nrg1 type I (Nrg1-I) in SOD1(G93A) mice muscles. We overexpressed Nrg1-I by means of an adeno-associated viral (AAV) vector, and investigated its effect by means of neurophysiological techniques assessing neuromuscular function, as well as molecular approaches (RT-PCR, western blot, immunohistochemistry, ELISA) to determine the mechanisms underlying Nrg1-I action. AAV-Nrg1-I intramuscular administration promoted motor axon collateral sprouting by acting on terminal Schwann cells, preventing denervation of the injected muscles through Akt and ERK1/2 pathways. We further used a model of muscle partial denervation by transecting the L4 spinal nerve. AAV-Nrg1-I intramuscular injection enhanced muscle reinnervation by collateral sprouting, whereas administration of lapatinib (ErbB receptor inhibitor) completely blocked it. We demonstrated that Nrg1-I plays a crucial role in the collateral reinnervation process, opening a new window for developing novel ALS therapies for functional recovery rather than preservation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Neuregulina-1/metabolismo , Junção Neuromuscular/metabolismo , Quinazolinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Lapatinib , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Denervação Muscular/métodos , Neurogênese/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Neurodegener Dis ; 11(3): 153-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22797053

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurodegenerative disease characterized by ascending muscle weakness, atrophy and paralysis. Early muscle abnormalities that precede motor neuron loss in ALS may destabilize neuromuscular junctions, and we have previously demonstrated alterations in myogenic regulatory factor (MRF) expression in vivo and in the activation of myofiber-associated skeletal muscle satellite cells (SMSCs) in the mouse model of ALS (SOD1-G93A). METHODS: To elucidate niche dependence versus cell-autonomous mutant SOD1 (mSOD1) toxicity in this model, we measured in vitro proliferation potential and MRF and cyclin gene expression in SMSC cultures derived from fast-twitch extensor digitorum longus and slow-twitch soleus muscles of SOD1-G93A mice. RESULTS: SMSCs from early presymptomatic (p40) to terminal, semi-paralytic (p120) SOD1-G93A mice demonstrated generally lower proliferation potential compared with age-matched controls. However, induced proliferation was observed in surgically denervated wild-type animals and SOD1-G93A animals at p90, when critical denervation arises. SMSCs from fast and slow muscles were similarly affected by mSOD1 expression. Lowered proliferation rate was generally corroborated with decreased relative MRF expression levels, although this was most prominent in early age and was modulated by muscle type origin. Cyclins controlling cell proliferation did not show modifications in their mRNA levels; however, the expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a), which is known to promote myoblast differentiation, was decreased in SOD1-G93A cultures. CONCLUSIONS: Our data suggest that the function of SMSCs is impaired in SOD1-G93A satellite cells from the earliest stages of the disease when no critical motor neuron loss has been described.


Assuntos
Proliferação de Células , Células Satélites de Músculo Esquelético/enzimologia , Células Satélites de Músculo Esquelético/patologia , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Transgênicos
5.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577611

RESUMO

Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.

6.
Biochem J ; 434(1): 133-41, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21087208

RESUMO

TH (tyrosine hydroxylase) is the rate-limiting enzyme in the synthesis of catecholamines. The cat-2 gene of the nematode Caenorhabditis elegans is expressed in mechanosensory dopaminergic neurons and has been proposed to encode a putative TH. In the present paper, we report the cloning of C. elegans full-length cat-2 cDNA and a detailed biochemical characterization of the encoded CAT-2 protein. Similar to other THs, C. elegans CAT-2 is composed of an N-terminal regulatory domain followed by a catalytic domain and a C-terminal oligomerization domain and shows high substrate specificity for L-tyrosine. Like hTH (human TH), CAT-2 is tetrameric and is phosphorylated at Ser35 (equivalent to Ser40 in hTH) by PKA (cAMP-dependent protein kinase). However, CAT-2 is devoid of characteristic regulatory mechanisms present in hTH, such as negative co-operativity for the cofactor, substrate inhibition or feedback inhibition exerted by catecholamines, end-products of the pathway. Thus TH activity in C. elegans displays a weaker regulation in comparison with the human orthologue, resembling a constitutively active enzyme. Overall, our data suggest that the intricate regulation characteristic of mammalian TH might have evolved from more simple models to adjust to the increasing complexity of the higher eukaryotes neuroendocrine systems.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/biossíntese , Oxigenases de Função Mista/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Clonagem Molecular , Variação Genética , Humanos , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Fenilalanina/metabolismo , Fosforilação , Proteínas Recombinantes , Especificidade por Substrato , Triptofano/metabolismo , Tirosina/metabolismo
7.
Int J Mol Sci ; 13(6): 6883-6901, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837670

RESUMO

When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.


Assuntos
Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Toxina Tetânica/metabolismo , Animais , Axônios/metabolismo , Clostridium tetani/metabolismo , Citosol/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios Motores/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
J Cell Biochem ; 112(10): 2825-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21608019

RESUMO

During postnatal growth and after muscle injury, satellite cells proliferate and differentiate into myotubes to form and repair musculature. Comparison of studies on satellite cell proliferation and differentiation characteristics is confounded by the heterogeneity of the experimental conditions used. To examine the influence of sex, age, and fiber-type origin on in vitro properties of satellite cells derived from postnatal muscles, fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles were extracted from male and female mice of 1 week to 3 months of age. Myoblast proliferation and myogenic regulatory factor (MRF) expression was measured from cultures of freshly isolated satellite cells. Higher proliferation rate and elevated Myod1 expression was found in male EDL and SOL derived cells compared with females at age of 40, 60, and 120 days, whereas inverse tendency for cell proliferation was apparent in EDL of juvenile (7-day-old) pups. Myogenin and Mrf4 transcripts were generally elevated in males of 40 and 60 days of age and in female EDL of juveniles. However, these differentiation markers did not significantly correlate with proliferation rate at all ages. Pax7, whose overexpression can block myogenesis, was up-regulated especially in 40-day-old females where MRF expression was low. These results indicate that gender, postnatal age, and muscle fiber origin affect proliferation and muscle transcription factor expression in vitro. The results also support the view that satellite cells originating from slow and fast muscles are intrinsically different and warrant further studies on the effect of cell origin for therapeutic approaches.


Assuntos
Células Satélites de Músculo Esquelético/citologia , Fatores Etários , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Proteína MyoD/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fatores Sexuais
9.
Biochem Biophys Res Commun ; 407(4): 758-63, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21439935

RESUMO

Reliability and accuracy of real-time quantitative PCR results depend on the use of housekeeping genes which must be constitutively expressed thorough the samples of the study. In the present work, we tested the expression stability of six candidate housekeeping genes (Actb, Rn18s, Gapdh, Hprt1, Sdha and B2m) considering sex, age, muscle-type and neurodegeneration or denervation status in mouse muscle satellite cells. Their expression varied under all variables tested; therefore the ranking of the most suitable genes for the normalization is modified depending on the factors included in the analysis, especially the age of the donor. Moreover, we describe the unsuitability of Rn18s in analysis comprising samples of different ages. On the other hand, we demonstrate that the use of the two best genes in each case is enough to obtain a reliable normalization factor. In this work, we give a broad information of the best housekeeping genes in mouse myogenic cells depending on the variables included in the experimental design.


Assuntos
Perfilação da Expressão Gênica , Doenças Neurodegenerativas/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores Etários , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Denervação Muscular , Reação em Cadeia da Polimerase , Fatores Sexuais
10.
Neurodegener Dis ; 8(5): 386-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21346327

RESUMO

BACKGROUND: In the superoxide dismutase 1 (SOD1)-G93A mouse model of amyotrophic lateral sclerosis (ALS), skeletal muscle is a key target of mutant SOD1 toxicity. However, the expression of factors that control the regenerative potential of the muscle is unknown in this model. OBJECTIVE: To characterize the expression of satellite cell marker Pax7 and myogenic regulatory factors (MRF) in skeletal muscle of SOD1-G93A mice at different stages of the disease. METHODS: The expressions of Pax7, Myod1, Myf5 and myogenin (Myog) were determined by quantitative real-time PCR and by Western blotting from the grouped gastrocnemius, quadriceps and soleus muscles of SOD1-G93A mice at presymptomatic, symptomatic and terminal stages of the disease, and from surgically denervated wild-type gastrocnemius muscles. RESULTS: Pax7 mRNA and MYF5 protein were upregulated in presymptomatic mice, coinciding with increased muscle damage marker Rrad and chemokine Ccl5. All MRF transcripts and most proteins (excluding MYOG) were increased, starting from 3 months of age, simultaneously with increased expression of denervation marker Chrna1. However, in the terminal stage, no protein increase was evident for Pax7 or any of the MRF despite the increased mRNA levels. The transcripts for chemokine Ccl2 and chemokine receptor Cxcr4 were increased starting from the onset of symptoms. CONCLUSIONS: The characterization of Pax7 and MRF in SOD1-G93A mice reveals a progressive induction of the myogenic program at the RNA level, but a blunted protein level response at late stages of the disease. Altered posttranscriptional and posttranslational mechanisms likely to operate, as well as the potential role of chemokine signaling in mutant SOD1 muscle, are discussed.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Fatores de Regulação Miogênica/biossíntese , Esclerose Lateral Amiotrófica/genética , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Regulação Miogênica/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
11.
J Neurochem ; 114(3): 853-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20492352

RESUMO

Phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and TPH2) are structurally and functionally related enzymes that share a number of ligands, such as amino acid substrates, pterin cofactors and inhibitors. We have recently identified four compounds (I-IV) with pharmacological chaperone effect for PAH and phenylketonuria mutants (Pey et al. (2008) J. Clin. Invest. 118, 2858-2867). We have now investigated the effect of these compounds on the brain enzymes TH and TPH2, comparative to hepatic PAH. As assayed by differential scanning fluorimetry each of the purified human PAH, TH and TPH2 was differently stabilized by the compounds and only 3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one (compound III) stabilized the three enzymes. We also investigated the effect of compounds II-IV in wild-type mice upon oral loading with 5 mg/kg/day. Significant effects were obtained by treatment with compound III - which increased total TH activity in mouse brain extracts by 100% but had no measurable effects either on TPH activity nor on monoamine neurotransmitter metabolites dopamine, dihydroxyphenylacetic acid, homovanillic acid, serotonin and 5-hydroxyindolacetic acid - and with 5,6-dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-one (compound IV) - which led to a 10-30% decrease of these metabolites. Our results indicate that pharmacological chaperones aiming the stabilization of one of the aromatic amino acid hydroxylases should be tested on other members of the enzyme family. Moreover, compound III stabilizes in vitro the human TH mutant R202H, associated to autosomal recessive L-DOPA-responsive dystonia, revealing the potential of pharmacological chaperones for the treatment of disorders associated with TH misfolding.


Assuntos
Monoaminas Biogênicas/biossíntese , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Chaperonas Moleculares/farmacologia , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/enzimologia , Distúrbios Distônicos/genética , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/química , Chaperonas Moleculares/uso terapêutico , Mutação/genética , Fenilalanina Hidroxilase/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/genética
12.
Toxins (Basel) ; 12(5)2020 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429516

RESUMO

Neuroinflammation plays a significant role in amyotrophic lateral sclerosis (ALS) pathology, leading to the development of therapies targeting inflammation in recent years. Our group has studied the tetanus toxin C-terminal fragment (TTC) as a therapeutic molecule, showing neuroprotective properties in the SOD1G93A mouse model. However, it is unknown whether TTC could have some effect on inflammation. The objective of this study was to assess the effect of TTC on the regulation of inflammatory mediators to elucidate its potential role in modulating inflammation occurring in ALS. After TTC treatment in SOD1G93A mice, levels of eotaxin-1, interleukin (IL)-2, IL-6 and macrophage inflammatory protein (MIP)-1 alpha (α) and galectin-1 were analyzed by immunoassays in plasma samples, whilst protein expression of caspase-1, IL-1ß, IL-6 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was measured in the spinal cord, extensor digitorum longus (EDL) muscle and soleus (SOL) muscle. The results showed reduced levels of IL-6 in spinal cord, EDL and SOL in treated SOD1G93A mice. In addition, TTC showed a different role in the modulation of NLRP3 and caspase-1 depending on the tissue analyzed. In conclusion, our results suggest that TTC could have a potential anti-inflammatory effect by reducing IL-6 levels in tissues drastically affected by the disease. However, further research is needed to study more in depth the anti-inflammatory effect of TTC in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Toxina Tetânica/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Inflamassomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética
13.
Neural Regen Res ; 15(6): 988-995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31823868

RESUMO

Among collagen members in the collagen superfamily, type XIX collagen has raised increasing interest in relation to its structural and biological roles. Type XIX collagen is a Fibril-Associated Collagen with Interrupted Triple helices member, one main subclass of collagens in this superfamily. This collagen contains a triple helix composed of three polypeptide segments aligned in parallel and it is associated with the basement membrane zone in different tissues. The molecular structure of type XIX collagen consists of five collagenous domains, COL1 to COL5, interrupted by six non-collagenous domains, NC1 to NC6. The most relevant domain by which this collagen exerts its biological roles is NC1 domain that can be cleavage enzymatically to release matricryptins, exerting anti-tumor and anti-angiogenic effect in murine and human models of cancer. Under physiological conditions, type XIX collagen expression decreases after birth in different tissues although it is necessary to keep its basal levels, mainly in skeletal muscle and hippocampal and telencephalic interneurons in brain. Notwithstanding, in amyotrophic lateral sclerosis, altered transcript expression levels show a novel biological effect of this collagen beyond its structural role in basement membranes and its anti-tumor and anti-angiogenic properties. Type XIX collagen can exert a compensatory effect to ameliorate the disease progression under neurodegenerative conditions specific to amyotrophic lateral sclerosis in transgenic SOD1G93A mice and amyotrophic lateral sclerosis patients. This novel biological role highlights its nature as prognostic biomarker of disease progression in and as promising therapeutic target, paving the way to a more precise prognosis of amyotrophic lateral sclerosis.

14.
FASEB J ; 22(8): 3046-58, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18460651

RESUMO

In humans, liver phenylalanine hydroxylase (PAH) has an established catabolic function, and mutations in PAH cause phenylketonuria, a genetic disease characterized by neurological damage, if not treated. To obtain novel evolutionary insights and information on molecular mechanisms operating in phenylketonuria, we investigated PAH in the nematode Caenorhabditis elegans (cePAH), where the enzyme is coded by the pah-1 gene, expressed in the hypodermis. CePAH presents similar molecular and kinetic properties to human PAH [S(0.5)(L-Phe) approximately 150 microM; K(m) for tetrahydrobiopterin (BH(4)) approximately 35 microM and comparable V(max)], but cePAH is devoid of positive cooperativity for L-Phe, an important regulatory mechanism of mammalian PAH that protects the nervous system from excess L-Phe. Pah-1 knockout worms show no obvious neurological defects, but in combination with a second cuticle synthesis mutation, they display serious cuticle abnormalities. We found that pah-1 knockouts lack a yellow-orange pigment in the cuticle, identified as melanin by spectroscopic techniques, and which is detected in C. elegans for the first time. Pah-1 mutants show stimulation of superoxide dismutase activity, suggesting that cuticle melanin functions as oxygen radical scavenger. Our results uncover both an important anabolic function of PAH and the change in regulation of the enzyme along evolution.


Assuntos
Caenorhabditis elegans/enzimologia , Fenilalanina Hidroxilase/metabolismo , Anabolizantes/metabolismo , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequestradores de Radicais Livres/metabolismo , Deleção de Genes , Genes de Helmintos , Cinética , Melaninas/metabolismo , Pressão Osmótica , Estresse Oxidativo , Fenótipo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/deficiência , Fenilalanina Hidroxilase/genética , Conformação Proteica , Especificidade por Substrato , Subtilisinas/genética , Subtilisinas/metabolismo
15.
Aging Dis ; 10(2): 278-292, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011479

RESUMO

The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.

16.
Proteomics ; 8(20): 4338-43, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18814324

RESUMO

The choice of housekeeping proteins or genes for internal standards should be made carefully, taking into account the cell and tissue type, the experimental conditions, and the healthy/disease state(s) under consideration. Furthermore, as the correlation between transcriptional and translational levels of commonly used housekeeping genes is often discussed, this study shed light on the transcriptional levels of beta-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the translational levels of beta-actin, GAPDH, and beta-tubulin in an amyotrophic lateral sclerosis mouse model.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Actinas/biossíntese , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Gliceraldeído-3-Fosfato Desidrogenases/biossíntese , Camundongos , Camundongos Endogâmicos , Músculo Esquelético/metabolismo , Medula Espinal/metabolismo , Transcrição Gênica , Tubulina (Proteína)/metabolismo
17.
J Neurochem ; 106(2): 672-81, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18419768

RESUMO

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamine neurotransmitters. Primary inherited defects in TH have been associated with l-DOPA responsive and non-responsive dystonia and infantile parkinsonism. In this study, we show that both the cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the feedback inhibitor and catecholamine product dopamine increase the kinetic stability of human TH isoform 1 in vitro. Activity measurements and synthesis of the enzyme by in vitro transcription-translation revealed a complex regulation by the cofactor including both enzyme inactivation and conformational stabilization. Oral BH(4) supplementation to mice increased TH activity and protein levels in brain extracts, while the Th-mRNA level was not affected. All together our results indicate that the molecular mechanisms for the stabilization are a primary folding-aid effect of BH(4) and a secondary effect by increased synthesis and binding of catecholamine ligands. Our results also establish that orally administered BH(4) crosses the blood-brain barrier and therapeutic regimes based on BH(4) supplementation should thus consider the effect on TH. Furthermore, BH(4) supplementation arises as a putative therapeutic agent in the treatment of brain disorders associated with TH misfolding, such as for the human TH isoform 1 mutation L205P.


Assuntos
Biopterinas/análogos & derivados , Encéfalo/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biopterinas/administração & dosagem , Encéfalo/efeitos dos fármacos , Dicroísmo Circular/métodos , Dopamina/administração & dosagem , Feminino , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Dobramento de Proteína , Tirosina 3-Mono-Oxigenase/genética
18.
Neuron ; 97(2): 356-367.e4, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307713

RESUMO

Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT.


Assuntos
Caenorhabditis elegans/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Resposta Táctica/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Cálcio/fisiologia , Mutação , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Análise de Célula Única , Temperatura , Sensação Térmica/fisiologia , Transgenes
19.
PLoS One ; 12(9): e0184626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886177

RESUMO

Amyotrophic Lateral Sclerosis (ALS) has lately become a suitable scenario to study the interplay between the hematopoietic system and disease progression. Recent studies in C9orf72 null mice have demonstrated that C9orf72 is necessary for the normal function of myeloid cells. In this study, we aimed to analyze in depth the connection between the hematopoietic system and secondary lymphoid (spleen) and non-lymphoid (liver and skeletal muscle) organs and tissues along the disease progression in the transgenic SOD1G93A mice. Our findings suggested that the inflammatory response due to the neurodegeneration in this animal model affected all three organs and tissues, especially the liver and the skeletal muscle. However, the liver was able to compensate this inflammatory response by means of the action of non-inflammatory monocytes, while in the skeletal muscle inflammatory monocytes prompted a further inflammation process until the terminal state of the animals. Interestingly, in blood, a positive correlation was found between non-inflammatory monocytes and survival of the transgenic SOD1G93A mice, while the contrary (a negative correlation) was found in the case of inflammatory monocytes, supporting their potential role as biomarkers of disease progression and survival in this animal model. These findings could prompt future translational studies in ALS patients, promoting the identification of new reliable biomarkers of disease progression.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Monócitos/metabolismo , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/citologia , Baço/metabolismo
20.
Front Mol Neurosci ; 9: 76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605908

RESUMO

Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA