RESUMO
Adaptive optics (AO) has revolutionized imaging in fields from astronomy to microscopy by correcting optical aberrations. In label-free microscopes, however, conventional AO faces limitations because of the absence of a guide star and the need to select an optimization metric specific to the sample and imaging process. Here, we propose an AO approach leveraging correlations between entangled photons to directly correct the point spread function. This guide star-free method is independent of the specimen and imaging modality. We demonstrate the imaging of biological samples in the presence of aberrations using a bright-field imaging setup operating with a source of spatially entangled photon pairs. Our approach performs better than conventional AO in correcting specific aberrations, particularly those involving substantial defocus. Our work improves AO for label-free microscopy and could play a major role in the development of quantum microscopes.
RESUMO
Pixelation occurs in many imaging systems and limits the spatial resolution of the acquired images. This effect is notably present in quantum imaging experiments with correlated photons in which the number of pixels used to detect coincidences is often limited by the sensor technology or the acquisition speed. Here, we introduce a pixel super-resolution technique based on measuring the full spatially-resolved joint probability distribution (JPD) of spatially-entangled photons. Without shifting optical elements or using prior information, our technique increases the pixel resolution of the imaging system by a factor two and enables retrieval of spatial information lost due to undersampling. We demonstrate its use in various quantum imaging protocols using photon pairs, including quantum illumination, entanglement-enabled quantum holography, and in a full-field version of N00N-state quantum holography. The JPD pixel super-resolution technique can benefit any full-field imaging system limited by the sensor spatial resolution, including all already established and future photon-correlation-based quantum imaging schemes, bringing these techniques closer to real-world applications.