Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBO J ; 41(1): e107640, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34779515

RESUMO

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Assuntos
Éxons/genética , Conformação de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo
2.
Nucleic Acids Res ; 52(8): 4124-4136, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38554107

RESUMO

Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.


Assuntos
Desenho de Fármacos , Sítios de Splice de RNA , Splicing de RNA , Humanos , Compostos Azo , Modelos Moleculares , Conformação de Ácido Nucleico , Pirimidinas , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101980

RESUMO

In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.


Assuntos
Fatores de Processamento de RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U2/química , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Motivos de Nucleotídeos , Fatores de Processamento de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U2/genética
4.
Chembiochem ; 25(9): e202300864, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38459794

RESUMO

The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Ribonucleoproteína Nuclear Pequena U1 , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química
5.
Anal Bioanal Chem ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379619

RESUMO

O-GlcNAc is a reversible post-translational modification found on serine and threonine residues of nucleocytoplasmic proteins. Four years ago, we released the O-GlcNAc Database ( oglcnac.mcw.edu ), a comprehensive catalog of O-GlcNAcylated proteins that has become one of the most cited resources in the field, with hundreds of unique users per month. We are now presenting an updated O-GlcNAc Database, which includes nearly 20,000 O-GlcNAcylated proteins and 48 species, marking substantial growth in data volume and scope. This paper presents the most noteworthy features implemented over the last year, often originating from feedback from the O-GlcNAc community. Among these features, we provide a brief overview of the database content, introduce our new protein viewer mode, and discuss the implementation of subcellular localization information and its applications in the O-GlcNAc score. We also provide an interface to use CytOVS, a tool designed to evaluate and sort O-GlcNAcome datasets derived from MS experiments. In conclusion, this new and improved O-GlcNAc Database represents a significant advancement in providing a comprehensive and expanded resource for researchers in the field of O-GlcNAc biology.

6.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687109

RESUMO

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Assuntos
Condensados Biomoleculares , Ribonucleoproteínas Nucleares Heterogêneas , Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA/metabolismo
7.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677607

RESUMO

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/química , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo
8.
RNA Biol ; 19(1): 943-960, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866748

RESUMO

In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.


Assuntos
Precursores de RNA , Ribonucleoproteína Nuclear Pequena U1 , Processamento Alternativo , Precursores de RNA/genética , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
9.
Nat Chem Biol ; 15(12): 1191-1198, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636429

RESUMO

Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.


Assuntos
Splicing de RNA , RNA/química , Conformação Molecular , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química
10.
Nucleic Acids Res ; 47(8): 4181-4197, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767021

RESUMO

Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5' splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5' splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5' splice sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Precursores de RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Serina-Treonina Quinases TOR/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Linhagem Celular , Éxons , Fibroblastos/citologia , Fibroblastos/metabolismo , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Íntrons , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29244160

RESUMO

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Assuntos
Proteínas de Bactérias/genética , Repressão Catabólica , Fator Proteico 1 do Hospedeiro/genética , Biossíntese de Proteínas , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Metabolismo dos Carboidratos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Cinética , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Regulon , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 109(21): E1405-14, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22550171

RESUMO

Reprogramming gene expression is an essential component of adaptation to changing environmental conditions. In bacteria, a widespread mechanism involves alternative sigma factors that redirect transcription toward specific regulons. The activity of sigma factors is often regulated through sequestration by cognate anti-sigma factors; however, for most systems, it is not known how the activity of the anti-sigma factor is controlled to release the sigma factor. Recently, the general stress response sigma factor in Alphaproteobacteria, σ(EcfG), was identified. σ(EcfG) is inactivated by the anti-sigma factor NepR, which is itself regulated by the response regulator PhyR. This key regulator sequesters NepR upon phosphorylation of its PhyR receiver domain via its σ(EcfG) sigma factor-like output domain (PhyR(SL)). To understand the molecular basis of the PhyR-mediated partner-switching mechanism, we solved the structure of the PhyR(SL)-NepR complex using NMR. The complex reveals an unprecedented anti-sigma factor binding mode: upon PhyR(SL) binding, NepR forms two helices that extend over the surface of the PhyR(SL) subdomains. Homology modeling and comparative analysis of NepR, PhyR(SL), and σ(EcfG) mutants indicate that NepR contacts both proteins with the same determinants, showing sigma factor mimicry at the atomic level. A lower density of hydrophobic interactions, together with the absence of specific polar contacts in the σ(EcfG)-NepR complex model, is consistent with the higher affinity of NepR for PhyR compared with σ(EcfG). Finally, by reconstituting the partner switch in vitro, we demonstrate that the difference in affinity of NepR for its partners is sufficient for the switch to occur.


Assuntos
Alphaproteobacteria/genética , Fator sigma/química , Fator sigma/genética , Sphingomonas/genética , Estresse Fisiológico/genética , Alphaproteobacteria/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Mimetismo Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fenótipo , Fosforilação/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator sigma/antagonistas & inibidores , Fator sigma/metabolismo , Transdução de Sinais/fisiologia , Sphingomonas/fisiologia
13.
Nucleic Acids Res ; 40(19): 9927-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22844099

RESUMO

The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Distúrbios Distônicos/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Termodinâmica
14.
Biomol NMR Assign ; 18(2): 263-267, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39249657

RESUMO

The catalytic domain of the calcium-dependent endoribonuclease EndoU from Homo sapiens was expressed in E. coli with 13C and 15N labeling. A nearly complete assignment of backbone 1H, 15N, and 13C resonances was obtained, as well as a secondary structure prediction based on the assigned chemical shifts. The predicted secondary structures were almost identical to the published crystal structure of calcium-activated EndoU. This is the first NMR study of an eukaryotic member of the EndoU-like superfamily of ribonucleases.


Assuntos
Cálcio , Ressonância Magnética Nuclear Biomolecular , Endorribonucleases Específicas de Uridilato , Humanos , Sequência de Aminoácidos , Cálcio/metabolismo , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
15.
RSC Med Chem ; 15(4): 1109-1126, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665842

RESUMO

In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.

16.
Res Sq ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39070628

RESUMO

Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we used biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determined the crystal structure of EndoU bound to calcium and found that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium-binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.

17.
J Biomol NMR ; 56(1): 3-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23306615

RESUMO

The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas de Ligação a DNA/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Homologia de Sequência de Aminoácidos
18.
Nat Commun ; 14(1): 5366, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666821

RESUMO

Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.


Assuntos
Neoplasias , Splicing de RNA , Splicing de RNA/genética , Motivos de Ligação ao RNA , Sítios de Splice de RNA , Homeostase , Fatores de Processamento de RNA/genética , Neoplasias/genética
19.
Nat Commun ; 14(1): 7166, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935663

RESUMO

The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.


Assuntos
Splicing de RNA , RNA , Conformação de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U2/metabolismo , RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
20.
Nucleic Acids Res ; 38(10): 3466-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20144952

RESUMO

Human THAP1 is the prototype of a large family of cellular factors sharing an original THAP zinc-finger motif responsible for DNA binding. Human THAP1 regulates endothelial cell proliferation and G1/S cell-cycle progression, through modulation of pRb/E2F cell-cycle target genes including rrm1. Recently, mutations in THAP1 have been found to cause DYT6 primary torsion dystonia, a human neurological disease. We report here the first 3D structure of the complex formed by the DNA-binding domain of THAP1 and its specific DNA target (THABS) found within the rrm1 target gene. The THAP zinc finger uses its double-stranded beta-sheet to fill the DNA major groove and provides a unique combination of contacts from the beta-sheet, the N-terminal tail and surrounding loops toward the five invariant base pairs of the THABS sequence. Our studies reveal unprecedented insights into the specific DNA recognition mechanisms within this large family of proteins controlling cell proliferation, cell cycle and pluripotency.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas Nucleares/química , Dedos de Zinco , Proteínas Reguladoras de Apoptose/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA